1. Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality.
- Author
-
Le, Bac Viet, Podszywałow-Bartnicka, Paulina, Piwocka, Katarzyna, and Skorski, Tomasz
- Subjects
- *
THERAPEUTIC use of antineoplastic agents , *GENETIC mutation , *INDIVIDUALIZED medicine , *CELL physiology , *LEUKEMIA , *BONE marrow , *CELL lines , *ENZYME inhibitors , *DRUG resistance in cancer cells - Abstract
Simple Summary: PARP inhibitors (PARPi) have been administered to treat BRCA1/2-mutated/deficient malignancies. Nevertheless, the resistance to PARPi is emerging in experimental and clinical interventions. Importantly, the resistance originated from diverse mechanisms, therefore requiring tremendous efforts to identify mechanistic aspects and develop combinational therapies to prevent the resistance and/or restore the efficiency of PARPi in cancer cells. Here, we review pre-existing and acquired resistance to PARPi and propose potential therapeutic solutions. The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF