5 results on '"Malfacini D"'
Search Results
2. Acute and chronic antiparkinsonian effects of the novel nociceptin/orphanin FQ receptor antagonist NiK-21273 in comparison with SB-612111
- Author
-
Marti, M, Mela, F, Budri, M, Volta, M, Malfacini, D, Molinari, S, Zaveri, N T, Ronzoni, S, Petrillo, P, Calò, G, and Morari, M
- Published
- 2013
- Full Text
- View/download PDF
3. In vitro and in vivo study of butyrylfentanyl and 4-fluorobutyrylfentanyl in female and male mice: Role of the CRF 1 receptor in cardiorespiratory impairment.
- Author
-
Bilel S, Azevedo Neto J, Tirri M, Corli G, Bassi M, Fantinati A, Serpelloni G, Malfacini D, Trapella C, Calo' G, and Marti M
- Abstract
Background and Purpose: Fentanyl analogues have been implicated in many cases of intoxication and death with overdose worldwide. The aim of this study is to investigate the pharmaco-toxicology of two fentanyl analogues: butyrylfentanyl (BUF) and 4-fluorobutyrylfentanyl (4F-BUF)., Experimental Approach: In vitro, we measured agonist opioid receptor efficacy, potency, and selectivity and ability to promote interaction of the μ receptor with G protein and β-arrestin 2. In vivo, we evaluated thermal antinociception, stimulated motor activity and cardiorespiratory changes in female and male CD-1 mice injected with BUF or 4F-BUF (0.1-6 mg·kg
-1 ). Opioid receptor specificity was investigated using naloxone (6 mg·kg-1 ). We investigated the possible role of stress in increasing cardiorespiratory toxicity using the corticotropin-releasing factor 1 (CRF1 ) antagonist antalarmin (10 mg·kg-1 )., Key Results: Agonists displayed the following rank of potency at μ receptors: fentanyl > 4F-BUF > BUF. Fentanyl and BUF behaved as partial agonists for the β-arrestin 2 pathway, whereas 4F-BUF did not promote β-arrestin 2 recruitment. In vivo, we revealed sex differences in motor and cardiorespiratory impairments but not antinociception induced by BUF and 4F-BUF. Antalarmin alone was effective in blocking respiratory impairment induced by BUF in both sexes but not 4F-BUF. The combination of naloxone and antalarmin significantly enhanced naloxone reversal of the cardiorespiratory impairments induced by BUF and 4F-BUF in mice., Conclusion and Implications: In this study, we have uncovered a novel mechanism by which synthetic opioids induce respiratory depression, shedding new light on the role of CRF1 receptors in cardiorespiratory impairments by μ agonists., (© 2024 The Author(s). British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)- Published
- 2024
- Full Text
- View/download PDF
4. The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.
- Author
-
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA, Abbracchio MP, Abraham G, Agoulnik A, Alexander W, Al-Hosaini K, Bäck M, Baker JG, Barnes NM, Bathgate R, Beaulieu JM, Beck-Sickinger AG, Behrens M, Bernstein KE, Bettler B, Birdsall NJM, Blaho V, Boulay F, Bousquet C, Bräuner-Osborne H, Burnstock G, Caló G, Castaño JP, Catt KJ, Ceruti S, Chazot P, Chiang N, Chini B, Chun J, Cianciulli A, Civelli O, Clapp LH, Couture R, Cox HM, Csaba Z, Dahlgren C, Dent G, Douglas SD, Dournaud P, Eguchi S, Escher E, Filardo EJ, Fong T, Fumagalli M, Gainetdinov RR, Garelja ML, de Gasparo M, Gerard C, Gershengorn M, Gobeil F, Goodfriend TL, Goudet C, Grätz L, Gregory KJ, Gundlach AL, Hamann J, Hanson J, Hauger RL, Hay DL, Heinemann A, Herr D, Hollenberg MD, Holliday ND, Horiuchi M, Hoyer D, Hunyady L, Husain A, IJzerman AP, Inagami T, Jacobson KA, Jensen RT, Jockers R, Jonnalagadda D, Karnik S, Kaupmann K, Kemp J, Kennedy C, Kihara Y, Kitazawa T, Kozielewicz P, Kreienkamp HJ, Kukkonen JP, Langenhan T, Larhammar D, Leach K, Lecca D, Lee JD, Leeman SE, Leprince J, Li XX, Lolait SJ, Lupp A, Macrae R, Maguire J, Malfacini D, Mazella J, McArdle CA, Melmed S, Michel MC, Miller LJ, Mitolo V, Mouillac B, Müller CE, Murphy PM, Nahon JL, Ngo T, Norel X, Nyimanu D, O'Carroll AM, Offermanns S, Panaro MA, Parmentier M, Pertwee RG, Pin JP, Prossnitz ER, Quinn M, Ramachandran R, Ray M, Reinscheid RK, Rondard P, Rovati GE, Ruzza C, Sanger GJ, Schöneberg T, Schulte G, Schulz S, Segaloff DL, Serhan CN, Singh KD, Smith CM, Stoddart LA, Sugimoto Y, Summers R, Tan VP, Thal D, Thomas WW, Timmermans PBMWM, Tirupula K, Toll L, Tulipano G, Unal H, Unger T, Valant C, Vanderheyden P, Vaudry D, Vaudry H, Vilardaga JP, Walker CS, Wang JM, Ward DT, Wester HJ, Willars GB, Williams TL, Woodruff TM, Yao C, and Ye RD
- Subjects
- Humans, Ligands, Ion Channels chemistry, Receptors, Cytoplasmic and Nuclear, Databases, Pharmaceutical, Receptors, G-Protein-Coupled
- Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate., (© 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.)
- Published
- 2023
- Full Text
- View/download PDF
5. Pharmacological characterization of tachykinin tetrabranched derivatives.
- Author
-
Ruzza C, Rizzi A, Malfacini D, Cerlesi MC, Ferrari F, Marzola E, Ambrosio C, Gro C, Severo S, Costa T, Calo G, and Guerrini R
- Subjects
- Animals, Calcium metabolism, Guinea Pigs, Humans, Male, Mice, Rats, Rats, Sprague-Dawley, Receptors, Natural Killer Cell metabolism, Substance P metabolism, Tachykinins administration & dosage, Receptors, Natural Killer Cell agonists, Tachykinins chemistry, Tachykinins pharmacology
- Abstract
Background and Purpose: Peptide welding technology (PWT) is a novel chemical strategy that allows the synthesis of multibranched peptides with high yield, purity and reproducibility. Using this technique, we have synthesized and pharmacologically characterized the tetrabranched derivatives of the tachykinins, substance P (SP), neurokinin A (NKA) and B (NKB)., Experimental Approach: The following in vitro assays were used: calcium mobilization in cells expressing human recombinant NK receptors, BRET studies of G-protein - NK1 receptor interaction, guinea pig ileum and rat urinary bladder bioassays. Nociceptive behavioural response experiments were performed in mice following intrathecal injection of PWT2-SP., Key Results: In calcium mobilization studies, PWT tachykinin derivatives behaved as full agonists at NK receptors with a selectivity profile similar to that of the natural peptides. NK receptor antagonists display similar potency values when tested against PWT2 derivatives and natural peptides. In BRET and bioassay experiments PWT2-SP mimicked the effects of SP with similar potency, maximal effects and sensitivity to aprepitant. After intrathecal administration in mice, PWT2-SP mimicked the nociceptive effects of SP, but with higher potency and a longer-lasting action. Aprepitant counteracted the effects of PWT2-SP in vivo., Conclusions and Implications: The present study has shown that the PWT technology can be successfully applied to the peptide sequence of tachykinins to generate tetrabranched derivatives characterized with a pharmacological profile similar to the native peptides. In vivo, PWT2-SP displayed higher potency and a marked prolongation of action, compared with SP., (© 2014 The British Pharmacological Society.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.