1. beta-Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations.
- Author
-
Sanni SJ, Hansen JT, Bonde MM, Speerschneider T, Christensen GL, Munk S, Gammeltoft S, and Hansen JL
- Subjects
- Animals, Arrestins classification, Cell Line, GTP-Binding Proteins metabolism, Humans, Protein Conformation, Signal Transduction, beta-Arrestin 1, beta-Arrestins, Arrestins metabolism, Receptor, Angiotensin, Type 1 metabolism
- Abstract
Background and Purpose: The angiotensin II type 1 (AT(1)) receptor belongs to family A of 7 transmembrane (7TM) receptors. The receptor has important roles in the cardiovascular system and is commonly used as a drug target in cardiovascular diseases. Interaction of 7TM receptors with G proteins or beta-arrestins often induces higher binding affinity for agonists. Here, we examined interactions between AT(1A) receptors and beta-arrestins to look for differences between the AT(1A) receptor interaction with beta-arrestin1 and beta-arrestin2., Experimental Approach: Ligand-induced interaction between AT(1A) receptors and beta-arrestins was measured by Bioluminescence Resonance Energy Transfer 2. AT(1A)-beta-arrestin1 and AT(1A)-beta-arrestin2 fusion proteins were cloned and tested for differences using immunocytochemistry, inositol phosphate hydrolysis and competition radioligand binding., Key Results: Bioluminescence Resonance Energy Transfer 2 analysis showed that beta-arrestin1 and 2 were recruited to AT(1A) receptors with similar ligand potencies and efficacies. The AT(1A)-beta-arrestin fusion proteins showed attenuated G protein signalling and increased agonist binding affinity, while antagonist affinity was unchanged. Importantly, larger agonist affinity shifts were observed for AT(1A)-beta-arrestin2 than for AT(1A)-beta-arrestin1., Conclusion and Implications: beta-Arrestin1 and 2 are recruited to AT(1A) receptors with similar ligand pharmacology and stabilize AT(1A) receptors in distinct high-affinity conformations. However, beta-arrestin2 induces a receptor conformation with a higher agonist-binding affinity than beta-arrestin1. Thus, this study demonstrates that beta-arrestins interact with AT(1A) receptors in different ways and suggest that AT(1) receptor biased agonists with the ability to recruit either of the beta-arrestins selectively, would be possible to design.
- Published
- 2010
- Full Text
- View/download PDF