1. Glucocorticoid receptor modulation decreases ER-positive breast cancer cell proliferation and suppresses wild-type and mutant ER chromatin association
- Author
-
Eva Tonsing-Carter, Kyle M. Hernandez, Caroline R. Kim, Ryan V. Harkless, Alyce Oh, Kathleen R. Bowie, Diana C. West-Szymanski, Mayra A. Betancourt-Ponce, Bradley D. Green, Ricardo R. Lastra, Gini F. Fleming, Sarat Chandarlapaty, and Suzanne D. Conzen
- Subjects
Breast cancer ,Estrogen receptor ,Glucocorticoid receptor ,Mutant activated estrogen receptor ,Nuclear receptor crosstalk ,Chromatin association ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Non-ER nuclear receptor activity can alter estrogen receptor (ER) chromatin association and resultant ER-mediated transcription. Consistent with GR modulation of ER activity, high tumor glucocorticoid receptor (GR) expression correlates with improved relapse-free survival in ER+ breast cancer (BC) patients. Methods In vitro cell proliferation assays were used to assess ER-mediated BC cell proliferation following GR modulation. ER chromatin association following ER/GR co-liganding was measured using global ChIP sequencing and directed ChIP analysis of proliferative gene enhancers. Results We found that GR liganding with either a pure agonist or a selective GR modulator (SGRM) slowed estradiol (E2)-mediated proliferation in ER+ BC models. SGRMs that antagonized transcription of GR-unique genes both promoted GR chromatin association and inhibited ER chromatin localization at common DNA enhancer sites. Gene expression analysis revealed that ER and GR co-activation decreased proliferative gene activation (compared to ER activation alone), specifically reducing CCND1, CDK2, and CDK6 gene expression. We also found that ligand-dependent GR occupancy of common ER-bound enhancer regions suppressed both wild-type and mutant ER chromatin association and decreased corresponding gene expression. In vivo, treatment with structurally diverse SGRMs also reduced MCF-7 Y537S ER-expressing BC xenograft growth. Conclusion These studies demonstrate that liganded GR can suppress ER chromatin occupancy at shared ER-regulated enhancers, including CCND1 (Cyclin D1), regardless of whether the ligand is a classic GR agonist or antagonist. Resulting GR-mediated suppression of ER+ BC proliferative gene expression and cell division suggests that SGRMs could decrease ER-driven gene expression.
- Published
- 2019
- Full Text
- View/download PDF