1. Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity.
- Author
-
Krumbholz M, Faber H, Steinmeyer F, Hoffmann LA, Kümpfel T, Pellkofer H, Derfuss T, Ionescu C, Starck M, Hafner C, Hohlfeld R, and Meinl E
- Subjects
- Adult, Autoimmunity, B-Cell Activating Factor blood, B-Cell Activation Factor Receptor metabolism, B-Lymphocytes immunology, Case-Control Studies, Cells, Cultured, Cross-Sectional Studies, Enzyme-Linked Immunosorbent Assay methods, Female, Humans, Interferon-beta analysis, Male, Multiple Sclerosis immunology, Tumor Necrosis Factor Ligand Superfamily Member 13 metabolism, B-Cell Activating Factor metabolism, B-Lymphocytes drug effects, Immunotherapy methods, Interferon-beta therapeutic use, Multiple Sclerosis drug therapy
- Abstract
B cells are increasingly recognized as major players in multiple sclerosis pathogenesis. The BAFF/APRIL system is crucial for B cell homoeostasis and may drive B cell-dependent autoimmunity. We asked whether this system is affected by Interferon (IFN)-beta therapy. We analysed transcription of the ligands (BAFF, APRIL, TWE-PRIL) and the corresponding receptors (BAFF-R, TACI and BCMA) by TaqMan-PCR ex vivo in whole blood and in immune cell subsets purified from IFN-beta-treated multiple sclerosis patients. Serum BAFF concentrations were determined by ELISA. This cross-sectional study involved 107 donors. IFN-beta therapy strongly induced BAFF transcription proportionally to the IFN-beta biomarker MxA in monocytes and granulocytes in vivo. BAFF serum concentrations were elevated in IFN-beta-treated multiple sclerosis patients to a similar level as observed in SLE patients. In cultured PBMC, neutrophils, fibroblasts and astrocytes, BAFF was induced by IFN-beta concentrations similar to those reached in vivo in treated multiple sclerosis patients. BAFF turned out to be the main regulated element of the BAFF/APRIL system. In untreated multiple sclerosis patients, there was no BAFF increase as compared to healthy controls. Our study reveals a complex situation. We show that IFN-beta therapy induces a potent B cell survival factor, BAFF. However, B cell depletion would be desirable at least in some multiple sclerosis patients. The systemic induction of BAFF by IFN-beta therapy may facilitate the production of various autoantibodies and of IFN-neutralizing antibodies. Individual MS/NMO patients who have major B cell involvement may benefit less than others from IFN-beta therapy, thus explaining interindividual differences of the therapeutic response.
- Published
- 2008
- Full Text
- View/download PDF