Eva Konecna, Petra Videnska, Lucie Buresova, Milan Urik, Sona Smetanova, Stanislav Smatana, Roman Prokes, Barbara Lanickova, Eva Budinska, Jana Klanova, and Petra Borilova Linhartova
Abstract Background Indoor dust particles are an everyday source of human exposure to microorganisms and their inhalation may directly affect the microbiota of the respiratory tract. We aimed to characterize the changes in human nasopharyngeal bacteriome after short-term exposure to indoor (workplace) environments. Methods In this pilot study, nasopharyngeal swabs were taken from 22 participants in the morning and after 8 h of their presence at the workplace. At the same time points, indoor dust samples were collected from the participants’ households (16 from flats and 6 from houses) and workplaces (8 from a maternity hospital – NEO, 6 from a pediatric hospital – ENT, and 8 from a research center – RCX). 16S rRNA sequencing analysis was performed on these human and environmental matrices. Results Staphylococcus and Corynebacterium were the most abundant genera in both indoor dust and nasopharyngeal samples. The analysis indicated lower bacterial diversity in indoor dust samples from flats compared to houses, NEO, ENT, and RCX (p 0.05, Shannon index). These “enriching” bacterial genera overlapped between the hospital workplaces – NEO and ENT but differed from those in the research center – RCX. Conclusions The results suggest that although the composition of nasopharyngeal bacteriome is relatively stable during the day. Short-term exposure to the indoor environment can result in the enrichment of the nasopharynx with bacterial DNA from indoor dust; the bacterial composition, however, varies by the indoor workplace environment.