1. Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions
- Author
-
Claudia Stocsits, Kay Nieselt, Peter F. Stadler, Wolfgang Huber, and Stephan Steigele
- Subjects
RNA, Untranslated ,Physiology ,Saccharomyces cerevisiae ,Sequence alignment ,Plant Science ,Computational biology ,Saccharomyces ,Genome ,General Biochemistry, Genetics and Molecular Biology ,RNA Motifs ,03 medical and health sciences ,Species Specificity ,Structural Biology ,Base sequence ,Computational analysis ,lcsh:QH301-705.5 ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,2. Zero hunger ,Genetics ,0303 health sciences ,biology ,Base Sequence ,Agricultural and Biological Sciences(all) ,Sequence Analysis, RNA ,Biochemistry, Genetics and Molecular Biology(all) ,030302 biochemistry & molecular biology ,Computational Biology ,RNA, Fungal ,Cell Biology ,biology.organism_classification ,Experimental research ,lcsh:Biology (General) ,Nucleic Acid Conformation ,Genome, Fungal ,General Agricultural and Biological Sciences ,Sequence Alignment ,Developmental Biology ,Biotechnology ,Research Article - Abstract
Background Non-coding RNAs (ncRNAs) are an emerging focus for both computational analysis and experimental research, resulting in a growing number of novel, non-protein coding transcripts with often unknown functions. Whole genome screens in higher eukaryotes, for example, provided evidence for a surprisingly large number of ncRNAs. To supplement these searches, we performed a computational analysis of seven yeast species and searched for new ncRNAs and RNA motifs. Results A comparative analysis of the genomes of seven yeast species yielded roughly 2800 genomic loci that showed the hallmarks of evolutionary conserved RNA secondary structures. A total of 74% of these regions overlapped with annotated non-coding or coding genes in yeast. Coding sequences that carry predicted structured RNA elements belong to a limited number of groups with common functions, suggesting that these RNA elements are involved in post-transcriptional regulation and/or cellular localization. About 700 conserved RNA structures were found outside annotated coding sequences and known ncRNA genes. Many of these predicted elements overlapped with UTR regions of particular classes of protein coding genes. In addition, a number of RNA elements overlapped with previously characterized antisense transcripts. Transcription of about 120 predicted elements located in promoter regions and other, previously un-annotated, intergenic regions was supported by tiling array experiments, ESTs, or SAGE data. Conclusion Our computational predictions strongly suggest that yeasts harbor a substantial pool of several hundred novel ncRNAs. In addition, we describe a large number of RNA structures in coding sequences and also within antisense transcripts that were previously characterized using tiling arrays.
- Full Text
- View/download PDF