1. Gene selection for classification of microarray data based on the Bayes error
- Author
-
Deng Hong-Wen and Zhang Ji-Gang
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. Results In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. Conclusion The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.
- Published
- 2007
- Full Text
- View/download PDF