1. Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices
- Author
-
Paola Stolfi, Ilaria Valentini, Maria Concetta Palumbo, Paolo Tieri, Andrea Grignolio, and Filippo Castiglione
- Subjects
Machine learning ,Random forest ,Emulator ,T2D ,Computational modeling ,Synthetic data ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. Results We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions. We then set up a statistical model able to recapitulate the simulated outcomes. Conclusions The resulting machine learning model adequately predicts the synthetic dataset and can, therefore, be used as a computationally-cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self-assessment by informed and aware individuals. The computational model used to generate the dataset of this work is available as a web-service at the following address: http://kraken.iac.rm.cnr.it/T2DM . more...
- Published
- 2020
- Full Text
- View/download PDF