1. Targeting CDC42 reduces skeletal degeneration after hematopoietic stem cell transplantation.
- Author
-
Landspersky T, Stein M, Saçma M, Geuder J, Braitsch K, Rivière J, Hettler F, Romero Marquez S, Vilne B, Hameister E, Richter D, Schönhals E, Tuckermann J, Verbeek M, Herhaus P, Hecker JS, Bassermann F, Götze KS, Enard W, Geiger H, Oostendorp RAJ, and Schreck C
- Subjects
- Animals, Humans, Mice, Actins metabolism, Mesenchymal Stem Cells metabolism, Mesenchymal Stem Cells cytology, Mitochondria metabolism, Mitophagy, cdc42 GTP-Binding Protein antagonists & inhibitors, cdc42 GTP-Binding Protein metabolism, Hematopoietic Stem Cell Transplantation adverse effects, Hematopoietic Stem Cell Transplantation methods
- Abstract
Abstract: Osteopenia and osteoporosis are common long-term complications of the cytotoxic conditioning regimen for hematopoietic stem cell transplantation (HSCT). We examined mesenchymal stem and progenitor cells (MSPCs), which include skeletal progenitors, from mice undergoing HSCT. Such MSPCs showed reduced fibroblastic colony-forming units frequency, increased DNA damage, and enhanced occurrence of cellular senescence, whereas there was a reduced bone volume in animals that underwent HSCT. This reduced MSPC function correlated with elevated activation of the small Rho guanosine triphosphate hydrolase CDC42, disorganized F-actin distribution, mitochondrial abnormalities, and impaired mitophagy in MSPCs. Changes and defects similar to those in mice were also observed in MSPCs from humans undergoing HSCT. A pharmacological treatment that attenuated the elevated activation of CDC42 restored F-actin fiber alignment, mitochondrial function, and mitophagy in MSPCs in vitro. Finally, targeting CDC42 activity in vivo in animals undergoing transplants improved MSPC quality to increase both bone volume and trabecular bone thickness. Our study shows that attenuation of CDC42 activity is sufficient to attenuate reduced function of MSPCs in a BM transplant setting., (© 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF