1. Staphylococcus aureus induces drug resistance in cancer T cells in Sézary syndrome.
- Author
-
Vadivel CK, Willerslev-Olsen A, Namini MRJ, Zeng Z, Yan L, Danielsen M, Gluud M, Pallesen EMH, Wojewoda K, Osmancevic A, Hedebo S, Chang YT, Lindahl LM, Koralov SB, Geskin LJ, Bates SE, Iversen L, Litman T, Bech R, Wobser M, Guenova E, Kamstrup MR, Ødum N, and Buus TB
- Subjects
- Humans, Staphylococcus aureus, NF-kappa B, T-Lymphocytes, Enterotoxins pharmacology, Receptors, Antigen, T-Cell, Histone Deacetylase Inhibitors pharmacology, Histone Deacetylase Inhibitors therapeutic use, Drug Resistance, Sezary Syndrome drug therapy, Sezary Syndrome pathology, Lymphoma, T-Cell, Cutaneous pathology, Staphylococcal Infections, Skin Neoplasms
- Abstract
Abstract: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus., (© 2024 American Society of Hematology. Published by Elsevier Inc. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF