1. Natural IgM antibodies inhibit microvesicle-driven coagulation and thrombosis.
- Author
-
Obermayer G, Afonyushkin T, Göderle L, Puhm F, Schrottmaier W, Taqi S, Schwameis M, Ay C, Pabinger I, Jilma B, Assinger A, Mackman N, and Binder CJ
- Subjects
- Animals, Blood Platelets cytology, Blood Platelets metabolism, Humans, Immunoglobulin M analysis, Mice, Inbred C57BL, Thrombosis blood, Mice, Blood Coagulation, Cell-Derived Microparticles metabolism, Immunoglobulin M metabolism, Thrombosis metabolism
- Abstract
Thrombosis and its associated complications are a major cause of morbidity and mortality worldwide. Microvesicles (MVs), a class of extracellular vesicles, are increasingly recognized as mediators of coagulation and biomarkers of thrombotic risk. Thus, identifying factors targeting MV-driven coagulation may help in the development of novel antithrombotic treatments. We have previously identified a subset of circulating MVs that is characterized by the presence of oxidation-specific epitopes and bound by natural immunoglobulin M (IgM) antibodies targeting these structures. This study investigated whether natural IgM antibodies, which are known to have important anti-inflammatory housekeeping functions, inhibit the procoagulatory properties of MVs. We found that the extent of plasma coagulation is inversely associated with the levels of both free and MV-bound endogenous IgM. Moreover, the oxidation epitope-specific natural IgM antibody LR04, which recognizes malondialdehyde adducts, reduced MV-dependent plasmatic coagulation and whole blood clotting without affecting thrombocyte aggregation. Intravenous injection of LR04 protected mice from MV-induced pulmonary thrombosis. Of note, LR04 competed the binding of coagulation factor X/Xa to MVs, providing a mechanistic explanation for its anticoagulatory effect. Thus, our data identify natural IgM antibodies as hitherto unknown modulators of MV-induced coagulation in vitro and in vivo and their prognostic and therapeutic potential in the management of thrombosis., (© 2021 by The American Society of Hematology.)
- Published
- 2021
- Full Text
- View/download PDF