Daniel J. DeAngelo, Alexandria K Maurer, Vijay G. Sankaran, Catherine J. Wu, Robert J. Soiffer, Caleb A. Lareau, Jacqueline S. Garcia, Livius Penter, Nicoletta Cieri, Jackson Southard, Donna Neuberg, Kenneth J. Livak, Shuqiang Li, Srinika Ranasinghe, and Leif S. Ludwig
Reconstitution of donor hematopoiesis after allogeneic hematopoietic stem cell transplantation (HSCT) forms the basis for effective graft-versus-leukemia responses, but mixed chimerism is not an infrequent outcome. How the donor and host hematopoietic system interact under conditions of mixed chimerism remains incompletely understood. Multi-modal single cell sequencing platforms are increasingly available and provide information regarding cell identities and interactions at high resolution. However, the analysis of post-transplant immune reconstitution requires consistent distinguishing of donor- and recipient-derived cells, which for sparse single cell sequencing data until now has remained a challenge. Recently, mitochondrial DNA (mtDNA) mutations have been recognized for their potential as personal genetic barcodes that can be detected with mitochondrial single cell assay for transposase-accessible chromatin with sequencing (mtscATAC-seq). We hypothesized that individual-specific mtDNA mutations could provide a sensitive and robust approach for distinguishing donor- from recipient-derived cells, and therefore tested this approach on bone marrow (BM) samples from patients with relapsed acute myeloid leukemia (AML) post-HSCT. We employed ATAC with select cell surface antigen profiling by sequencing (ASAP-seq), which enables the detection of mtDNA mutations within distinct surface marker-defined cell populations alongside chromatin accessibility. We selected serial samples collected from the ETCTN 10026 study, which tested combined decitabine (days 1-5, every 4 weeks, start cycle 0) and ipilimumab (day 1, every 4 weeks, start cycle 1) in relapsed AML post-HSCT. We focused on 13 samples (study entry, on treatment and disease progression) from 3 patients: AML1012 (HSCT from a matched related donor [MRD]), and AML1010 and AML1026 (matched unrelated donor [MUD]-HSCT). In total, we obtained 33,943 ASAP-seq profiles, including 3,283 single T cells. While clustering using single cell chromatin profiles alone only allowed identification of either CD4 + or CD8 + T cells, integration with surface marker expression enabled more detailed annotations of 8 T cell subpopulations and NK cells. Further, phenotypically distinct subpopulations such as CD57 + CD4 + and CD8 + T cells shared highly similar chromatin profiles, and 11.1% of CD4 + and 33.7% of CD8 + T cells would have been mislabeled based on clustering of chromatin profiles alone. Thus, ASAP-seq identified T cell subsets with markedly improved accuracy and resolution than scATAC-seq alone. Upon evaluation of mtDNA mutations to discriminate donor- and recipient-derived single T cells, we found that this was unreliable for MRD-HSCT (AML1012), but highly robust in the setting of MUD-HSCT (AML1010, AML1026), consistent with maternal inheritance of mitochondrial genomes. For the latter two patients, we identified 48 donor- and 26 recipient-specific mtDNA mutations, all with high heteroplasmy (range 82 - 99%). Presence of donor- and recipient-derived mtDNA mutations was mutually exclusive, and recipient-specific mtDNA mutations were also detectable in AML cells. Clinical bulk and mtDNA mutation-based single T cell chimerisms were highly correlated (r = 0.97). AML1010 had sustained complete T cell chimerism (>97%) during study treatment. In AML1026, the mtDNA mutation-based T cell chimerism rose from 55% to 71% after 1 cycle of decitabine and then remained stable until disease progression 3 months later. This was associated with increased percentage of donor-derived CD4 + T cells (45% [study entry] vs. 71% [after 1 cycle of decitabine], p < 0.01), while donor-derived CD8 + T cells remained unchanged at 76%. Across all studied timepoints in AML1026, donor versus recipient skewing was also highest in CD4 + T cell subsets, with fewer naïve (20% vs. 31%, p < 0.01) but more donor-derived CD57 + CD4 + T cells (13% vs. 3%, p < 0.01). We demonstrate that mtDNA mutations can discriminate between donor- and recipient-derived single cells, enabling detection and in-depth characterization of chimeric immune cell dynamics after MUD HSCT. This approach will allow to systematically dissect conditions of mixed chimerism in the post-transplant setting with larger studies. Disclosures DeAngelo: Abbvie: Research Funding; Takeda: Consultancy; Servier: Consultancy; Pfizer: Consultancy; Novartis: Consultancy, Research Funding; Jazz: Consultancy; Incyte: Consultancy; Forty-Seven: Consultancy; Autolus: Consultancy; Amgen: Consultancy; Agios: Consultancy; Blueprint: Research Funding; Glycomimetrics: Research Funding. Neuberg: Madrigal Pharmaceuticals: Other: Stock ownership; Pharmacyclics: Research Funding. Sankaran: Cellarity: Consultancy; Forma: Consultancy; Novartis: Consultancy; Branch Biosciences: Consultancy; Ensoma: Consultancy. Soiffer: Jasper: Consultancy; Jazz Pharmaceuticals, USA: Consultancy; Precision Biosciences, USA: Consultancy; Juno Therapeutics, USA: Other: Data Safety Monitoring Board; Kiadis, Netherlands: Membership on an entity's Board of Directors or advisory committees; Rheos Therapeutics, USA: Consultancy; Gilead, USA: Other: Career Development Award Committee; NMPD - Be the Match, USA: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy. Garcia: Genentech: Research Funding; Prelude: Research Funding; Pfizer: Research Funding; AstraZeneca: Research Funding; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Wu: Pharmacyclics: Research Funding; BioNTech: Current equity holder in publicly-traded company. OffLabel Disclosure: ipilimumab to modulate anti-leukemia immunity in the post-transplant and transplant-naive context