1. Downstream antibody purification using aqueous two-phase extraction.
- Author
-
Mao LN, Rogers JK, Westoby M, Conley L, and Pieracci J
- Subjects
- Animals, CHO Cells, Citrates chemistry, Cricetinae, Cricetulus, Polyethylene Glycols chemistry, Sodium Citrate, Water chemistry, Antibodies, Monoclonal isolation & purification, Chemical Fractionation methods
- Abstract
The extraction of antibodies using a polyethylene glycol (PEG)-citrate aqueous two-phase system (ATPS) was investigated. Studies using purified monoclonal antibody (mAb) identified operating ranges for successful phase formation and factors that significantly affected antibody partitioning. The separation of antibody and host cell protein (HCP) from clarified cell culture media was examined using statistical design of experiments (DOE). The partitioning of antibody was nearly complete over the entire range of the operating space examined. A model of the HCP partitioning was generated in which both NaCl and citrate concentrations were identified as significant factors. To achieve the highest purity, the partitioning of HCP from cell culture fluid into the product containing phase was minimized using a Steepest Descent algorithm. An optimal ATPS consisting of 14.0% (w/w) PEG, 8.4% (w/w) citrate, and 7.2% (w/w) NaCl at pH 7.2 resulted in a product yield of 89%, an approximate 7.6-fold reduction in HCP levels relative to the clarified cell culture fluid before extraction and an overall purity of 70%. A system consisting of 15% (w/w) PEG, 8% (w/w) citrate, and 15% (w/w) NaCl at pH 5.5 reduced product-related impurities (aggregates and low molecular product fragments) from ∼40% to less than 0.5% while achieving 95% product recovery. At the experimental conditions that were optimized in the batch mode, a scale-up model for the use of counter-current extraction technology was developed to identify potential improvements in purity and recovery that could be realized in the continuous operational mode., (Copyright © 2010 American Institute of Chemical Engineers (AIChE).)
- Published
- 2010
- Full Text
- View/download PDF