1. Single-atom catalysts with peroxidase-like activity boost gel-sol transition-based biosensing.
- Author
-
Wu W, Xia S, Liu Y, Ma C, Lyu Z, Zhao M, Ding S, and Hu Q
- Subjects
- Humans, Trypsin, Peroxidases, Hydrogels, Gelatin, Biosensing Techniques
- Abstract
Gel-sol transition-based biosensors are a promising and popular alternative for portable, cost-effective, and user-friendly point-of-care testing (POCT). However, the improvement of sensitivity and practicability is highly demanded. In this work, a Fe-NC single-atom catalyst (SAC) is successfully synthesized and used as a signal amplification element for highly sensitive gel-sol transition-based biosensing. The Fe-NC SAC owns excellent peroxidase-like activity of 188 U/mg due to its definite atomically active centers and maximum atomic utilization of active metal atoms. As a proof-of-concept, the Fe-NC SAC is uniformly encapsulated in gelatin hydrogel to obtain a hydrogel sensor that allows colorimetric detection of trypsin based on gel-sol transition. The gelatin hydrogel network collapses derived from the hydrolysis by trypsin, and thereby the released Fe-NC SAC leads to the colorimetric sensing process. The designed hydrogel sensor offers a low detection limit of 1 ng/mL with a range from 1 to 100 ng/mL toward trypsin detection, exhibiting excellent selectivity and sensitivity, and well-performed practical detection in human serum. This work offers a successful paradigm for designing a promising SACs-related detection strategy and paves a new way to develop high-performance gel-sol transition-based sensors and various POCT applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF