1. Insights into Dentatorubral-Pallidoluysian Atrophy from a new Drosophila model of disease.
- Author
-
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, and Todi SV
- Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
- Published
- 2024
- Full Text
- View/download PDF