1. Techno-economic implications of improved high gravity corn mash fermentation.
- Author
-
Kollaras A, Kavanagh JM, Bell GL, Purkovic D, Mandarakas S, Arcenal P, Ng WS, Routledge KS, Selwood DH, Koutouridis P, Paras FE, Milic P, Tirado-Escobar ES, Moore MJ, Bell PJ, and Attfield PV
- Subjects
- Acetates chemistry, Acetates metabolism, Biofuels economics, Chromatography, High Pressure Liquid, Ethanol chemistry, Glucose chemistry, Glucose metabolism, Glycerol chemistry, Glycerol metabolism, Models, Theoretical, Ethanol metabolism, Fermentation, Saccharomyces cerevisiae metabolism, Zea mays metabolism
- Abstract
The performance of Saccharomyces cerevisiae MBG3964, a strain able to tolerate >18% v/v ethanol, was compared to leading industrial ethanol strain, Fermentis Ethanol Red, under high gravity corn mash fermentation conditions. Compared to the industrial ethanol strain, MBG3964 gave increased alcohol yield (140g L(-1) vs. 126g L(-1)), lower residual sugar (4g L(-1) vs. 32g L(-1)), and lower glycerol (11g L(-1) vs. 12g L(-1)). After 72h fermentation, MBG3964 showed about 40% viability, whereas the control yeast was only about 3% viable. Based on modelling, the higher ethanol tolerant yeast could increase the profitability of a corn-ethanol plant and help it remain viable through higher production, lower unit heating requirements and extra throughput. A typical 50M gal y(-1) dry mill ethanol plant that sells dried distiller's grain could potentially increase its profit by nearly $US3.4M y(-1) due solely to the extra yield, and potentially another $US4.1M y(-1) if extra throughput is possible., (Copyright © 2011 Elsevier Ltd. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF