1. Effects of Electric-Toothbrush Vibrations on the Expression of Collagen and Non-Collagen Proteins through the Focal Adhesion Kinase Signaling Pathway in Gingival Fibroblasts
- Author
-
Kumiko Nakai, Hideki Tanaka, Kyoko Fukuzawa, Jyunya Nakajima, Manami Ozaki, Nobue Kato, and Takayuki Kawato
- Subjects
electric-toothbrush vibrations ,gingival fibroblasts ,extracellular matrix ,collagen ,fibronectin ,elastin ,Microbiology ,QR1-502 - Abstract
Electric-toothbrush vibrations, which remove plaque, are transmitted to the gingival connective tissue via epithelial cells. Physical energy affects cell function; however, the effects of electric-toothbrush vibrations on gingival extracellular matrix (ECM) protein expression remain unknown. We aimed to examine the effects of these vibrations on the expression of ECM proteins—type I collagen (col I), type III collagen (col III), elastin, and fibronectin (FN)—using human gingival fibroblasts (HGnFs). HGnFs were seeded for 5 days in a six-well plate with a hydrophilic surface, exposed to electric-toothbrush vibrations, and cultured for 7 days. Subsequently, the mRNA and protein levels of col I, col III, elastin, and FN were examined. To investigate the role of focal adhesion kinase (FAK) signaling on ECM protein expression in vibration-stimulated cells, the cells were treated with siRNA against protein tyrosine kinase (PTK). Electric-toothbrush vibrations increased col I, col III, elastin, and FN expression; promoted collagen and non-collagen protein production; and enhanced FAK phosphorylation in HGnFs. Moreover, PTK2 siRNA completely blocked the effects of these vibrations on the expression of col I, col III and elastin mRNA. The results suggest that electric-toothbrush vibrations increase collagen, elastin, and FN production through the FAK-signaling pathway in fibroblasts.
- Published
- 2022
- Full Text
- View/download PDF