1. Angiogenic Potential of VEGF Mimetic Peptides for the Biofunctionalization of Collagen/Hydroxyapatite Composites
- Author
-
Wang, Suya, Umrath, Felix, Cen, Wanjing, Reinert, Siegmar, and Alexander, Dorothea
- Subjects
Vascular Endothelial Growth Factor A ,Neovascularization, Physiologic ,Vascular Cell Adhesion Molecule-1 ,Microbiology ,Article ,angiogenesis ,Angiopoietin-1 ,Human Umbilical Vein Endothelial Cells ,Humans ,Vascular Endothelial Growth Factor Receptor-1 ,Tissue Scaffolds ,Hepatocyte Growth Factor ,Interleukin-8 ,Gene Expression Regulation, Developmental ,Proto-Oncogene Proteins c-met ,Hypoxia-Inducible Factor 1, alpha Subunit ,Vascular Endothelial Growth Factor Receptor-2 ,QR1-502 ,Insulin-Like Growth Factor Binding Protein 1 ,Insulin-Like Growth Factor Binding Protein 2 ,VEGF mimicry peptides ,Durapatite ,Vascular Endothelial Growth Factor (VEGF) ,tissue engineering ,Human Umbilical Vein Endothelial Cells (HUVECs) ,Collagen ,Matrix Metalloproteinase 1 ,Peptides ,collagen/hydroxyapatite composites - Abstract
Currently, the focus on bioinspired concepts for the development of tissue engineering constructs is increasing. For this purpose, the combination of collagen (Coll) and hydroxyapatite (HA) comes closest to the natural composition of the bone. In order to confer angiogenic properties to the scaffold material, vascular endothelial growth factor (VEGF) is frequently used. In the present study, we used a VEGF mimetic peptide (QK) and a modified QK-peptide with a poly-glutamic acid tag (E7-QK) to enhance binding to HA, and analyzed in detail binding efficiency and angiogenic properties. We detected a significantly higher binding efficiency of E7-QK peptides to hydroxyapatite particles compared to the unmodified QK-peptide. Tube formation assays revealed similar angiogenic functions of E7-QK peptide (1µM) as induced by the entire VEGF protein. Analyses of gene expression of angiogenic factors and their receptors (FLT-1, KDR, HGF, MET, IL-8, HIF-1α, MMP-1, IGFBP-1, IGFBP-2, VCAM-1, and ANGPT-1) showed higher expression levels in HUVECs cultured in the presence of 1 µM E7-QK and VEGF compared to those detected in the negative control group without any angiogenic stimuli. In contrast, the expression of the anti-angiogenic gene TIMP-1 showed lower mRNA levels in HUVECs cultured with E7-QK and VEGF. Sprouting assays with HUVEC spheroids within Coll/HA/E7-QK scaffolds showed significantly longer sprouts compared to those induced within Coll/HA/QK or Coll/HA scaffolds. Our results demonstrate a significantly better functionality of the E7-QK peptide, electrostatically bound to hydroxyapatite particles compared to that of unmodified QK peptide. We conclude that the used E7-QK peptide represents an excellently suited biomolecule for the generation of collagen/hydroxyapatite composites with angiogenic properties.
- Published
- 2021
- Full Text
- View/download PDF