1. Learning Quadrupedal High-Speed Running on Uneven Terrain.
- Author
-
Han, Xinyu and Zhao, Mingguo
- Subjects
- *
ROBOT motion , *REINFORCEMENT learning - Abstract
Reinforcement learning (RL)-based controllers have been applied to the high-speed movement of quadruped robots on uneven terrains. The external disturbances increase as the robot moves faster on such terrains, affecting the stability of the robot. Many existing RL-based methods adopt higher control frequencies to respond quickly to the disturbance, which requires a significant computational cost. We propose a control framework that consists of an RL-based control policy updating at a low frequency and a model-based joint controller updating at a high frequency. Unlike previous methods, our policy outputs the control law for each joint, executed by the corresponding high-frequency joint controller to reduce the impact of external disturbances on the robot. We evaluated our method on various simulated terrains with height differences of up to 6 cm. We achieved a running motion of 1.8 m/s in the simulation using the Unitree A1 quadruped. The RL-based control policy updates at 50 Hz with a latency of 20 ms, while the model-based joint controller runs at 1000 Hz. The experimental results show that the proposed framework can overcome the latency caused by low-frequency updates, making it applicable for real-robot deployment. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF