1. Retinal adaptive optics imaging with a pyramid wavefront sensor
- Author
-
Brunner, Elisabeth, Shatokhina, Julia, Shirazi, Muhammad Faizan, Drexler, Wolfgang, Leitgeb, Rainer, Pollreisz, Andreas, Hitzenberger, Christoph K., Ramlau, Ronny, and Pircher, Michael
- Subjects
Article - Abstract
The pyramid wavefront sensor (P-WFS) has replaced the Shack-Hartmann (SH-) WFS as the sensor of choice for high-performance adaptive optics (AO) systems in astronomy. Many advantages of the P-WFS, such as its adjustable pupil sampling and superior sensitivity, are potentially of great benefit for AO-supported imaging in ophthalmology as well. However, so far no high quality ophthalmic AO imaging was achieved using this novel sensor. Usually, a P-WFS requires modulation and high precision optics that lead to high complexity and costs of the sensor. These factors limit the competitiveness of the P-WFS with respect to other WFS devices for AO correction in visual science. Here, we present a cost-effective realization of AO correction with a non-modulated P-WFS based on standard components and apply this technique to human retinal in vivo imaging using optical coherence tomography (OCT). P-WFS based high quality AO imaging was successfully performed in 5 healthy subjects and smallest retinal cells such as central foveal cone photoreceptors are visualized. The robustness and versatility of the sensor is demonstrated in the model eye under various conditions and in vivo by high-resolution imaging of other structures in the retina using standard and extended fields of view. As a quality benchmark, the performance of conventional SH-WFS based AO was used and successfully met. This work may trigger a paradigm shift with respect to the wavefront sensor of choice for AO in ophthalmic imaging.
- Published
- 2021