6 results on '"Yoon DS"'
Search Results
2. Chemically-induced osteogenic cells for bone tissue engineering and disease modeling.
- Author
-
Yoon JY, Mandakhbayar N, Hyun J, Yoon DS, Patel KD, Kang K, Shim HS, Lee HH, Lee JH, Leong KW, and Kim HW
- Subjects
- Animals, Biocompatible Materials metabolism, Bone Regeneration physiology, Cell Differentiation physiology, Cells, Cultured, Colforsin metabolism, Humans, Mice, Osteoblasts, Osteogenesis physiology, Core Binding Factor Alpha 1 Subunit genetics, Core Binding Factor Alpha 1 Subunit metabolism, Tissue Engineering
- Abstract
Cell reprogramming can satisfy the demands of obtaining specific cell types for applications such as tissue regeneration and disease modeling. Here we report the reprogramming of human fibroblasts to produce chemically-induced osteogenic cells (ciOG), and explore the potential uses of ciOG in bone repair and disease treatment. A chemical cocktail of RepSox, forskolin, and phenamil was used for osteogenic induction of fibroblasts by activation of RUNX2 expression. Following a maturation, the cells differentiated toward an osteoblast phenotype that produced mineralized nodules. Bulk and single-cell RNA sequencing identified a distinct ciOG population. ciOG formed mineralized tissue in an ectopic site of immunodeficiency mice, unlike the original fibroblasts. Osteogenic reprogramming was modulated under engineered culture substrates. When generated on a nanofiber substrate ciOG accelerated bone matrix formation in a calvarial defect, indicating that the engineered biomaterial promotes the osteogenic capacity of ciOG in vivo. Furthermore, the ciOG platform recapitulated the genetic bone diseases Proteus syndrome and osteogenesis imperfecta, allowing candidate drug testing. The reprogramming of human fibroblasts into osteogenic cells with a chemical cocktail thus provides a source of specialized cells for use in bone tissue engineering and disease modeling., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
3. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: Activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress.
- Author
-
Singh RK, Yoon DS, Mandakhbayar N, Li C, Kurian AG, Lee NH, Lee JH, and Kim HW
- Subjects
- Animals, Cell Differentiation, Cerium pharmacology, Cerium therapeutic use, Integrins metabolism, Osteogenesis, Oxidative Stress, Rats, Transforming Growth Factor beta metabolism, Bone Regeneration drug effects, Diabetes Mellitus metabolism, Mesenchymal Stem Cells drug effects, Mesenchymal Stem Cells metabolism, Tissue Scaffolds
- Abstract
Regenerating defective bone in patients with diabetes mellitus remains a significant challenge due to high blood glucose level and oxidative stress. Here we aim to tackle this issue by means of a drug- and cell-free scaffolding approach. We found the nanoceria decorated on various types of scaffolds (fibrous or 3D-printed one; named nCe-scaffold) could render a therapeutic surface that can recapitulate the microenvironment: modulating oxidative stress while offering a nanotopological cue to regenerating cells. Mesenchymal stem cells (MSCs) recognized the nanoscale (tens of nm) topology of nCe-scaffolds, presenting highly upregulated curvature-sensing membrane protein, integrin set, and adhesion-related molecules. Osteogenic differentiation and mineralization were further significantly enhanced by the nCe-scaffolds. Of note, the stimulated osteogenic potential was identified to be through integrin-mediated TGF-β co-signaling activation. Such MSC-regulatory effects were proven in vivo by the accelerated bone formation in rat calvarium defect model. The nCe-scaffolds further exhibited profound enzymatic and catalytic potential, leading to effectively scavenging reactive oxygen species in vivo. When implanted in diabetic calvarium defect, nCe-scaffolds significantly enhanced early bone regeneration. We consider the currently-exploited nCe-scaffolds can be a promising drug- and cell-free therapeutic means to treat defective tissues like bone in diabetic conditions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
4. Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy.
- Author
-
Lee NH, Kang MS, Kim TH, Yoon DS, Mandakhbayar N, Jo SB, Kim HS, Knowles JC, Lee JH, and Kim HW
- Subjects
- Animals, Biocompatible Materials, Bone Cements, Cell Differentiation, Humans, Osteoclasts, Osteogenesis, Rats, Osteoporosis drug therapy, Strontium
- Abstract
Repair of defective hard-tissues in osteoporotic patients faces significantly challenges with limited therapeutic options. Although biomedical cements are considered promising materials for healthy bone repair, their uses for healing osteoporotic fracture are clinically limited. Herein, strontium-releasing-nanoscale cement was introduced to provide dual therapeutic-actions (pro-osteogenesis and anti-osteoclastogenesis), eventually for the regeneration of osteoporotic bone defect. The Sr-nanocement hardened from the Sr-doped nanoscale-glass particles was shown to release multiple ions including silicate, calcium and strontium at doses therapeutically relevant over time. When the Sr-nanocement was treated to pre-osteoblastic cells, the osteogenic mRNA level (Runx2, Opn, Bsp, Ocn), alkaline phosphatase activity, calcium deposition, and target luciferase reporter were stimulated with respect to the case with Sr-free-nanocement. When treated to pre-osteoclastic cells, the Sr-nanocement substantially reduced the osteoclastogenesis, such as osteoclastic mRNA level (Casr, Nfatc1, c-fos, Acp, Ctsk, Mmp-9), tartrate-resistant acid trap activity, and bone resorption capacity. In particular, the osteoclastic inhibition resulted in part from the interactive effect of osteoblasts which were activated by the Sr-nanocement, i.e., blockage of RANKL (receptor activator of nuclear factor-κB ligand) binding by enhanced osteoprotegerin and the deactivated Nfatc1. The Sr-nanocement, administered to an ovariectomized tibia defect (osteoporotic model) in rats, exhibited profound bone regenerative potential in cortical and surrounding trabecular area, including increased bone volume and density, enhanced production of osteopromotive proteins, and more populated osteoblasts, together with reduced signs of osteoclastic bone resorption. These results demonstrate that Sr-nanocement, with its dual effects of osteoclastic inhibition and osteogenic-stimulation, can be considered an effective nanotherapeutic implantable biomaterial platform for the treatment of osteoporotic bone defects., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
5. Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels.
- Author
-
Kim TH, Jeon WY, Ji Y, Park EJ, Yoon DS, Lee NH, Park SM, Mandakhbayar N, Lee JH, Lee HH, and Kim HW
- Subjects
- Animals, Electricity, Fibroblasts, Rats, Skin, Endothelial Cells, Ion Channels, Re-Epithelialization, Wound Healing
- Abstract
Electricity constitutes a natural biophysical component that preserves tissue homeostasis and modulates many biological processes, including the repair of damaged tissues. Wound healing involves intricate cellular events, such as inflammation, angiogenesis, matrix synthesis, and epithelialization whereby multiple cell types sense the environmental cues to rebuild the structure and functions. Here, we report that electricity auto-generating glucose-responsive enzymatic-biofuel-cell (EBC) skin patch stimulates the wound healing process. Rat wounded-skin model and in vitro cell cultures showed that EBC accelerated wound healing by modulating inflammation while stimulating angiogenesis, fibroblast fuctionality and matrix synthesis. Of note, EBC-activated cellular bahaviors were linked to the signalings involved with calcium influx, which predominantly dependent on the mechanosensitive ion channels, primarily Piezo1. Inhibition of Piezo1-receptor impaired the EBC-induced key functions of both fibroblasts and endothelial cells in the wound healing. This study highlights the significant roles of electricity played in wound healing through activated mechanosensitive ion channels and the calcium influx, and suggests the possibility of the electricity auto-generating EBC-based skin patch for use as a wound healing device., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
6. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis.
- Author
-
Park IS, Mahapatra C, Park JS, Dashnyam K, Kim JW, Ahn JC, Chung PS, Yoon DS, Mandakhbayar N, Singh RK, Lee JH, Leong KW, and Kim HW
- Abstract
In critical limb ischemia (CLI), overproduction of reactive oxygen species (ROS) and impairment of neovascularization contribute to muscle damage and limb loss. Cerium oxide nanoparticles (CNP, or 'nanoceria') possess oxygen-modulating properties which have shown therapeutic utility in various disease models. Here we show that CNP exhibit pro-angiogenic activity in a mouse hindlimb ischemia model, and investigate the molecular mechanism underlying the pro-angiogenic effect. CNP were injected into a ligated region of a femoral artery, and tissue reperfusion and hindlimb salvage were monitored for 3 weeks. Tissue analysis revealed stimulation of pro-angiogenic markers, maturation of blood vessels, and remodeling of muscle tissue following CNP administration. At a dose of 0.6 mg CNP, mice showed reperfusion of blood vessels in the hindlimb and a high rate of limb salvage (71%, n = 7), while all untreated mice (n = 7) suffered foot necrosis or limb loss. In vitro, CNP promoted endothelial cell tubule formation via the Ref-1/APE1 signaling pathway, and the involvement of this pathway in the CNP response was confirmed in vivo using immunocompetent and immunodeficient mice and by siRNA knockdown of APE1. These results demonstrate that CNP provide an effective treatment of CLI with excessive ROS by scavenging ROS to improve endothelial survival and by inducing Ref-1/APE1-dependent angiogenesis to revascularize an ischemic limb., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.