1. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue.
- Author
-
Durymanov MO, Slastnikova TA, Kuzmich AI, Khramtsov YV, Ulasov AV, Rosenkranz AA, Egorov SY, Sverdlov ED, and Sobolev AS
- Subjects
- Animals, Cell Line, Gene Transfer Techniques, Melanoma therapy, Mice, Microscopy, Confocal, Receptor, Melanocortin, Type 1 genetics, Melanoma metabolism, Nanoparticles chemistry, Polymers chemistry, Receptor, Melanocortin, Type 1 metabolism
- Abstract
Targeted sodium-iodide symporter (NIS) gene transfer can be considered as a promising approach for diagnostics of specific types of cancer. For this purpose we used targeted polyplexes based on PEI-PEG-MC1SP block-copolymer containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (MC1R) overexpressed on melanoma cells. Targeted polyplexes demonstrated enhanced NIS gene transfer compared to non-targeted (lacking MC1SP) ones in vitro. Using dorsal skinfold chamber and intravital microscopy we evaluated accumulation and microdistribution of quantum dot-labeled polyplexes in tumor and normal subcutaneous tissues up to 4 h after intravenous injection. Polyplexes demonstrated significantly higher total accumulation in tumor tissue in comparison with subcutaneous ones (control). Targeted and non-targeted polyplexes extravasated and penetrated into the tumor tissue up to 20 μm from the vessel walls. In contrast, in normal subcutaneous tissue polyplexes penetrated not more than 3 μm from the vessel walls with the level of extravasated polyplexes 400-fold less than in tumor. Accumulated polyplexes in tumor tissue caused NIS gene expression. Subsequent (123)I(-) intravenous injection resulted in 6.8 ± 1.1 and 4.5 ± 0.8% ID/g (p < 0.001) iodide accumulation in tumors in the case of targeted and non-targeted polyplexes, respectively, as was shown using SPECT/CT., (Copyright © 2013 Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF