1. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-Lysine) for applications in cartilage tissue engineering.
- Author
-
Lam J, Clark EC, Fong EL, Lee EJ, Lu S, Tabata Y, and Mikos AG
- Subjects
- Animals, Cartilage drug effects, Chickens, Chondrogenesis drug effects, Chondrogenesis genetics, DNA metabolism, Fluorescein-5-isothiocyanate metabolism, Fumarates pharmacology, Gene Expression Regulation drug effects, Glycosaminoglycans metabolism, Male, Mesenchymal Stem Cells drug effects, Mesenchymal Stem Cells metabolism, Molecular Weight, Particle Size, Polyethylene Glycols pharmacology, Rabbits, Signal Transduction drug effects, Signal Transduction genetics, Cartilage physiology, Electrolytes pharmacology, Hydrogels pharmacology, Mesenchymal Stem Cells cytology, Polylysine pharmacology, Tissue Engineering methods
- Abstract
To address the lack of reliable long-term solutions for cartilage injuries, strategies in tissue engineering are beginning to leverage developmental processes to spur tissue regeneration. This study focuses on the use of poly(L-lysine) (PLL), previously shown to up-regulate mesenchymal condensation during developmental skeletogenesis in vitro, as an early chondrogenic stimulant of mesenchymal stem cells (MSCs). We characterized the effect of PLL incorporation on the swelling and degradation of oligo(poly(ethylene) glycol) fumarate) (OPF)-based hydrogels as functions of PLL molecular weight and dosage. Furthermore, we investigated the effect of PLL incorporation on the chondrogenic gene expression of hydrogel-encapsulated MSCs. The incorporation of PLL resulted in early enhancements of type II collagen and aggrecan gene expression and type II/type I collagen expression ratios when compared to blank controls. The presentation of PLL to MSCs encapsulated in OPF hydrogels also enhanced N-cadherin gene expression under certain culture conditions, suggesting that PLL may induce the expression of condensation markers in synthetic hydrogel systems. In summary, PLL can function as an inductive factor that primes the cellular microenvironment for early chondrogenic gene expression but may require additional biochemical factors for the generation of fully functional chondrocytes., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF