Background Alzheimer's disease (AD) is the most common cause of dementia with no curative therapy currently available. Establishment of sensitive and non-invasive biomarkers that promote an early diagnosis of AD is crucial for the effective administration of disease-modifying drugs. MicroRNAs (miRNAs) mediate posttranscriptional repression of numerous target genes. Aberrant regulation of miRNA expression is implicated in AD pathogenesis, and circulating miRNAs serve as potential biomarkers for AD. However, data analysis of numerous AD-specific miRNAs derived from small RNA-sequencing (RNA-Seq) is most often laborious. Methods To identify circulating miRNA biomarkers for AD, we reanalyzed a publicly available small RNA-Seq dataset, composed of blood samples derived from 48 AD patients and 22 normal control (NC) subjects, by a simple web-based miRNA data analysis pipeline that combines omiRas and DIANA miRPath. Results By using omiRas, we identified 27 miRNAs expressed differentially between both groups, including upregulation in AD of miR-26b-3p, miR-28–3p, miR-30c-5p, miR-30d-5p, miR-148b-5p, miR-151a-3p, miR-186–5p, miR-425–5p, miR-550a-5p, miR-1468, miR-4781–3p, miR-5001–3p, and miR-6513–3p and downregulation in AD of let-7a-5p, let-7e-5p, let-7f-5p, let-7g-5p, miR-15a-5p, miR-17–3p, miR-29b-3p, miR-98–5p, miR-144–5p, miR-148a-3p, miR-502–3p, miR-660–5p, miR-1294, and miR-3200–3p. DIANA miRPath indicated that miRNA-regulated pathways potentially down– regulated in AD are linked with neuronal synaptic functions, while those upregulated in AD are implicated in cell survival and cellular communication. Conclusions The simple web-based miRNA data analysis pipeline helps us to effortlessly identify candidates for miRNA biomarkers and pathways of AD from the complex small RNA–Seq data.