1. Sulfur utilization of corals is enhanced by endosymbiotic algae
- Author
-
Ikuko Yuyama, Tomihiko Higuchi, and Yoshio Takei
- Subjects
Endosymbiosis ,Skeletogenesis ,Coral ,Acropora ,Symbiodinium ,Sulfate ion ,Science ,Biology (General) ,QH301-705.5 - Abstract
Sulfur-containing compounds are important components of all organisms, but few studies have explored sulfate utilization in corals. Our previous study found that the expression of a sulfur transporter (SLC26A11) was upregulated in the presence of Symbiodinium cells in juveniles of the reef-building coral Acropora tenuis. In this study, we performed autoradiography using 35S-labeled sulfate ions (35SO4 2−) to examine the localization and amount of incorporated radioactive sulfate in the coral tissues and symbiotic algae. Incorporated 35SO4 2− was detected in symbiotic algal cells, nematocysts, ectodermal cells and calicoblast cells. The combined results of 35S autoradiography and Alcian Blue staining showed that incorporated 35S accumulated as sulfated glycosaminoglycans (GAGs) in the ectodermal cell layer. We also compared the relative incorporation of 35SO4 2− into coral tissues and endosymbiotic algae, and their chemical fractions in dark versus light (photosynthetic) conditions. The amount of sulfur compounds, such as GAGs and lipids, generated from 35SO4 2− was higher under photosynthetic conditions. Together with the upregulation of sulfate transporters by symbiosis, our results suggest that photosynthesis of algal endosymbionts contributes to the synthesis and utilization of sulfur compounds in corals.
- Published
- 2016
- Full Text
- View/download PDF