Endocytosis was studied in the seminal vesicle secretory cells of castrated and control hamsters in order to investigate the effect of testosterone withdrawal in the endocytic activity of these cells. Horseradish peroxidase was injected into the glands lumen after removal of their contents, and tracer distribution was qualitatively studied, and the number of labeled endocytic vesicles quantitatively analyzed, following 5, 20, 40 and 60 min incubation. The following compartments are labeled both in castrate and control cells: 1), endocytic vesicles; 2), vacuoles with or without secretory material; 3), multivesicular bodies; 4), Golgi cisternae; 5), intercellular spaces; 6), sub-epithelial space. The pattern of labeling is lighter in castrate than in control cells and the labeling of Golgi cisternae, which correlates with a significant peak in the number of endocytic vesicles, is observed later in castrated animals than in controls: 40 min vs 20 min. Exocytosis, as evaluated through the fraction of secretory protein released in vitro, decreases following castration. Endocytosis performed in castrated, pilocarpine treated animals shows that the Golgi labeling, coinciding with numerous labeled endocytic vesicles, is advanced from 40 to 20 min after stimulation of exocytosis. The results show that, in the seminal vesicle secretory cells a) the endocytic pathway does not depend on testosterone; b) testosterone withdrawal decreases endocytosis and delays the kinetics of labeling and; c) endocytosis couples to exocytosis, probably so regulating the apical cell membrane area.