Zhang, Hui, Chang, Zhenyu, Mehmood, Khalid, Abbas, Rao Zahid, Nabi, Fazul, Rehman, Mujeeb Ur, Wu, Xiaoxing, Tian, Xinxin, Yuan, Xiaodan, Li, Zhaoyang, and Zhou, Donghai
Nano-sized copper particles are widely used in various chemical, physical, and biological fields. However, earlier studies have shown that nano copper particles (40-100 μg/mL) can induce cell toxicity and apoptosis. Therefore, this study was conducted to investigate the role of nano copper in mitochondrion-mediated apoptosis in PK-15 cells. The cells were treated with different doses of nano copper (20, 40, 60, and 80 μg/mL) to determine the effects of apoptosis using acridine orange/ethidium bromide (AO/EB) fluorescence staining and a flow cytometry assay. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the PK-15 cells were examined using commercially available kits. Moreover, the mRNA levels of the Bax, Bid, Caspase-3, and CYCS genes were assessed by real-time PCR. The results revealed that nano copper exposure induced apoptosis and changed the mitochondrial membrane potential. In addition, nano copper significantly altered the levels of the Bax, Bid, Caspase-3, and CYCS genes at a concentration of 40 μg/mL. To summarize, nano copper significantly ( P < 0.05) decreased the level of SOD and increased the level of MDA in PK-15 cells. Altogether, these results suggest that nano copper can play an important role in inducing the apoptotic pathway in PK-15 cells, which may be the mechanism by which nano copper induces nephrotoxicity. [ABSTRACT FROM AUTHOR]