1. Factor XIII Activation Peptide Residues Play Important Roles in Stability, Activation, and Transglutaminase Activity.
- Author
-
Syed Mohammed RD, Gutierrez Luque L, and Maurer MC
- Subjects
- Humans, Factor XIII metabolism, Factor XIII chemistry, Factor XIII genetics, Protein Stability, Recombinant Proteins metabolism, Recombinant Proteins chemistry, Recombinant Proteins genetics, Proteolysis, Enzyme Activation, Amino Acid Sequence, Peptides metabolism, Peptides chemistry, Intercellular Signaling Peptides and Proteins, Transglutaminases metabolism, Transglutaminases genetics, Transglutaminases chemistry, Thrombin metabolism, Thrombin chemistry
- Abstract
A subunit of factor XIII (FXIII-A) contains a unique activation peptide (AP) that protects the catalytic triad and prevents degradation. In plasma, FXIII is activated proteolytically (FXIII-A*) by thrombin and Ca
2+ cleaving AP, while in cytoplasm, it is activated nonproteolytically (FXIII-A°) with increased Ca2+ concentrations. This study aimed to elucidate the role of individual parts of the FXIII-A AP in protein stability, thrombin activation, and transglutaminase activity. Recombinant FXIII-A AP variants were expressed, and SDS-PAGE was used to monitor thrombin hydrolysis at the AP cleavage sites R37-G38. Transglutaminase activities were assessed by cross-linking lysine mimics to Fbg αC (233-425, glutamine-substrate) and monitoring reactions by mass spectrometry and in-gel fluorescence assays. FXIII-A AP variants, S19P, E23K, and D24V, degraded during purification, indicating their vital role in FXIII-A2 stability. Mutation of P36 to L36/F36 abolished the proteolytic cleavage of AP and thus prevented activation. FXIII-A N20S and P27L exhibited slower thrombin activation, likely due to the loss of key interdomain H-bonding interactions. Except N20S and P15L/P16L, all activatable FXIII-A* variants (P15L, P16L, S19A, and P27L) showed similar cross-linking activity to WT. By contrast, FXIII-A° P15L, P16L, and P15L/P16L had significantly lower cross-linking activity than FXIII-A° WT, suggesting that loss of these prolines had a greater structural impact. In conclusion, FXIII-A AP residues that play crucial roles in FXIII-A stability, activation, and activity were identified. The interactions between these AP amino acid residues and other domains control the stability and activity of FXIII.- Published
- 2024
- Full Text
- View/download PDF