1. Water Leakage Pathway Leads to Internal Hydration of the p53 Core Domain
- Author
-
Igor D. M. Lima, Murilo M. Pedrote, Mayra A. Marques, Gileno dos S. de Sousa, Jerson L. Silva, Guilherme A. P. de Oliveira, and Elio A. Cino
- Subjects
Biochemistry - Abstract
The gene encoding the p53 tumor suppressor protein is the most frequently mutated oncogene in cancer patients; yet, generalized strategies for rescuing the function of different p53 mutants remain elusive. This work investigates factors that may contribute to the low inherent stability of the wild-type p53 core domain (p53C) and structurally compromised Y220C mutant. Pressure-induced unfolding of p53C was compared to p63C, the p53 family member with the highest stability, the engineered superstable p53C hexamutant (p53C HM), and lower stability p53C Y220C cancer-associated mutant. The following pressure unfolding values (P50% bar) were obtained: p53C 3346, p53C Y220C 2217, p53C HM 3943, and p63C 4326. Molecular dynamics (MD) simulations revealed that p53C Y220C was most prone to water infiltration, followed by p53C, whereas the interiors of p53C HM and p63C remained comparably dry. A strong correlation (
- Published
- 2022