The protein tyrosine kinase (PTK) inhibitor genistein has been demonstrated to inhibit platelet-activating factor-stimulated prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-primed P388D1 macrophage-like cells (Glaser et al., J Biol Chem 265: 8658-8664, 1990). Therefore, the role of PTK in eicosanoid biosynthesis was investigated in murine resident peritoneal macrophages using genistein and tyrphostin-25, selective PTK inhibitors. Genistein, a competitive inhibitor of ATP binding on PTK, inhibited PGE2 production (IC50 = 20 microM) in response to zymosan, calcium ionophore A23187, and phorbol myristate acetate stimulation. Genistein also inhibited leukotriene C4 (LTC4) production in response to zymosan and calcium ionophore A23187 (IC50 = 10 and 15 microM, respectively) stimulation. Tyrphostin-25, a competitive inhibitor of substrate binding on PTK, inhibited zymosan-stimulated PGE2 and LTC4 production, IC50 = 20 and 7 microM, respectively. Neither genistein nor tyrophostin-25 had any effect on human synovial fluid phospholipase A2 (PLA2) activity in vitro or on cyclooxygenase activity in the intact macrophage; however, tyrphostin-25 did affect 5-lipoxygenase activity (determined from the metabolism of exogenously applied arachidonic acid). These results suggest PTK-mediated phosphorylation as a common event in the signal transduction mechanisms of different stimuli which activate PLA2 for arachidonic acid release and subsequent eicosanoid biosynthesis. Immunoblot analyses of zymosan-stimulated peritoneal exudate cells with the phosphotyrosine monoclonal antibody clone 4G10 demonstrated an increase in protein phosphotyrosine levels in eight major protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis: p59, 71, 76, 90, 100, 112, 125 and 150. Maximal phosphorylation of these protein substrates occurred after 1-2 min stimulation. Zymosan and LPS stimulation of peritoneal exudate cells produced similar patterns of protein tyrosine phosphorylation. Zymosan-stimulated tyrosine phosphorylation was inhibited by tyrphostin-25 in a concentration-dependent manner between 10 and 60 microM, demonstrating a similar concentration response between effects on tyrosine phosphorylation and eicosanoid biosynthesis in the murine peritoneal macrophage. The use of selective PTK inhibitors suggests a common role for PTK and tyrosine phosphorylation in eicosanoid biosynthesis in the murine peritoneal macrophage.