1. Thermal evolution of an early magma ocean in interaction with the atmosphere: conditions for the condensation of a water ocean
- Author
-
Anne Davaille, François Leblanc, Philippe Sarda, Eric Chassefière, T. Lebrun, G. Brandeis, Emmanuel Marcq, Hélène Massol, Géosciences Paris Saclay (GEOPS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Fluides, automatique, systèmes thermiques (FAST), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Convection ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Environmental Engineering ,Accretion (meteorology) ,lcsh:QP1-981 ,lcsh:QR1-502 ,Mars Exploration Program ,Atmospheric sciences ,Industrial and Manufacturing Engineering ,lcsh:Microbiology ,lcsh:Physiology ,Physics::Geophysics ,Atmosphere ,Lunar magma ocean ,13. Climate action ,Magma ,Physics::Space Physics ,lcsh:Zoology ,Astrophysics::Solar and Stellar Astrophysics ,Ocean planet ,Astrophysics::Earth and Planetary Astrophysics ,lcsh:QL1-991 ,Geology ,Water vapor ,Physics::Atmospheric and Oceanic Physics - Abstract
EPOV 2012: From Planets to Life – Colloquium of the CNRS Interdisciplinary Initiative “Planetary Environments and Origins of Life”; International audience; The thermal evolution of magma oceans produced by collision with giant impactors late in accretion is xpected to depend on the composition and structure of the atmosphere through the greenhouse effect of CO2 and H2O released from the magma during its crystallization. We developed a 1D parameterized convection model of a magma ocean coupled with a 1D radiative convective model of the atmosphere. We conducted a parametric study and described the influences of some important parameters such as the Sun-planet distance. Our results suggest that a steam atmosphere delays the end of the magma ocean phase by typically 1 Myr. Water vapor condenses to an ocean after 0.1 Myr, 1.5 Myr and 10 Myr for, respectively, Mars, Earth and Venus. This time would be virtually infinite for an Earth-sized planet located at less than 0.66 AU from the Sun. So there are conditions such as no water ocean is formed on Venus. Moreover, for Mars and Earth, water ocean formation time scales are shorter than typical time gaps between major impacts. This implies that successive water oceans may have developed during accretion, making easier the loss of their atmospheres by impact erosion.
- Published
- 2014