7 results on '"Leuschner, F."'
Search Results
2. Single-cell transcriptomics reveal distinctive patterns of fibroblast activation in heart failure with preserved ejection fraction.
- Author
-
Lanzer JD, Wienecke LM, Ramirez Flores RO, Zylla MM, Kley C, Hartmann N, Sicklinger F, Schultz JH, Frey N, Saez-Rodriguez J, and Leuschner F
- Abstract
Inflammation, fibrosis and metabolic stress critically promote heart failure with preserved ejection fraction (HFpEF). Exposure to high-fat diet and nitric oxide synthase inhibitor N[w]-nitro-l-arginine methyl ester (L-NAME) recapitulate features of HFpEF in mice. To identify disease-specific traits during adverse remodeling, we profiled interstitial cells in early murine HFpEF using single-cell RNAseq (scRNAseq). Diastolic dysfunction and perivascular fibrosis were accompanied by an activation of cardiac fibroblast and macrophage subsets. Integration of fibroblasts from HFpEF with two murine models for heart failure with reduced ejection fraction (HFrEF) identified a catalog of conserved fibroblast phenotypes across mouse models. Moreover, HFpEF-specific characteristics included induced metabolic, hypoxic and inflammatory transcription factors and pathways, including enhanced expression of Angiopoietin-like 4 (Angptl4) next to basement membrane compounds, such as collagen IV (Col4a1). Fibroblast activation was further dissected into transcriptional and compositional shifts and thereby highly responsive cell states for each HF model were identified. In contrast to HFrEF, where myofibroblast and matrifibrocyte activation were crucial features, we found that these cell states played a subsidiary role in early HFpEF. These disease-specific fibroblast signatures were corroborated in human myocardial bulk transcriptomes. Furthermore, we identified a potential cross-talk between macrophages and fibroblasts via SPP1 and TNFɑ with estimated fibroblast target genes including Col4a1 and Angptl4. Treatment with recombinant ANGPTL4 ameliorated the murine HFpEF phenotype and diastolic dysfunction by reducing collagen IV deposition from fibroblasts in vivo and in vitro. In line, ANGPTL4, was elevated in plasma samples of HFpEF patients and particularly high levels associated with a preserved global-longitudinal strain. Taken together, our study provides a comprehensive characterization of molecular fibroblast activation patterns in murine HFpEF, as well as the identification of Angiopoietin-like 4 as central mechanistic regulator with protective effects., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Characterizing the immune response to myocardial infarction in pigs.
- Author
-
Schnitter F, Stangl F, Noeske E, Bille M, Stadtmüller A, Vogt N, Sicklinger F, Leuschner F, Frey A, Schreiber L, Frantz S, Beyersdorf N, Ramos G, Gladow N, and Hofmann U
- Subjects
- Animals, Sus scrofa, Swine, Lymphocyte Activation, Male, Transcriptome, Female, Time Factors, Myocardial Infarction immunology, Myocardial Infarction pathology, Disease Models, Animal, T-Lymphocytes, Regulatory immunology, Myocardium pathology, Myocardium immunology
- Abstract
Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4
+ Foxp3+ regulatory T cells (Treg ), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
4. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo.
- Author
-
Varma E, Burghaus J, Schwarzl T, Sekaran T, Gupta P, Górska AA, Hofmann C, Stroh C, Jürgensen L, Kamuf-Schenk V, Li X, Medert R, Leuschner F, Kmietczyk V, Freichel M, Katus HA, Hentze MW, Frey N, and Völkers M
- Subjects
- Cardiomegaly metabolism, Myocytes, Cardiac metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Signal Transduction physiology, Animals, Mice, Rats, Heart Failure metabolism, TOR Serine-Threonine Kinases metabolism
- Abstract
RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
5. Elevated platelet-leukocyte complexes are associated with, but dispensable for myocardial ischemia-reperfusion injury.
- Author
-
Starz C, Härdtner C, Mauler M, Dufner B, Hoppe N, Krebs K, Ehlert CA, Merz J, Heidt T, Stachon P, Wolf D, Bode C, von Zur Muehlen C, Rottbauer W, Gawaz M, Duerschmied D, Leuschner F, Borst O, Westermann D, and Hilgendorf I
- Subjects
- Mice, Animals, P-Selectin metabolism, Leukocytes, Myocardial Reperfusion Injury metabolism, Myocardial Infarction metabolism, Reperfusion Injury metabolism, Myocardial Ischemia metabolism
- Abstract
Aims: P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury., Methods and Results: By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC., Conclusion: We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
6. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs.
- Author
-
Kokot KE, Kneuer JM, John D, Rebs S, Möbius-Winkler MN, Erbe S, Müller M, Andritschke M, Gaul S, Sheikh BN, Haas J, Thiele H, Müller OJ, Hille S, Leuschner F, Dimmeler S, Streckfuss-Bömeke K, Meder B, Laufs U, and Boeckel JN
- Subjects
- Humans, RNA chemistry, RNA genetics, RNA metabolism, RNA, Circular genetics, RNA-Binding Proteins genetics, RNA-Binding Proteins metabolism, Induced Pluripotent Stem Cells metabolism, RNA Editing
- Abstract
Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
7. The role of Wnt signaling in the healing myocardium: a focus on cell specificity.
- Author
-
Meyer IS and Leuschner F
- Subjects
- Animals, Humans, Myocardial Infarction metabolism, Myocardial Infarction pathology, Myocardium metabolism, Myocardium pathology, Wnt Signaling Pathway physiology
- Abstract
Various cell types are involved in the healing process after myocardial infarction (MI). Besides cardiac resident cells (such as cardiomyocytes, fibroblasts and endothelial cells) already present at the lesion site, a massive influx of leukocytes (mainly monocytes and neutrophils) is observed within hours after the ischemic event. So far, little is known about modes of interaction of these cells. Wnt signaling is an evolutionary conserved signaling cassette known to play an important role in cell-cell communication. While the overall reactivation of Wnt signaling upon ischemic injury is well described, the precise expression pattern of Wnt proteins, however, is far from understood. We here describe known Wnt components that partake in MI healing and differentiate cell-specific aspects. The secretion of Wnt proteins and their antagonists in the context of cardiac inflammation after MI appear to be tightly regulated in a spatial-temporal manner. Overall, we aim to stress the importance of elucidating not only Wnt component-specific aspects, but also their sometimes contradicting effects in different target cells. A better understanding of Wnt signaling in MI healing may eventually lead to the development of successful therapeutic approaches in an often considered "un-druggable" pathway.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.