Recently, probability models with thicker or thinner tails have gained more importance among statisticians and physicists because of their vast applications in random walks, Lévi flights, financial modeling, etc. In this connection, we introduce here a new family of generalized probability distributions associated with the Mittag-Leffler function. This family gives an extension to the generalized gamma family, opens up a vast area of potential applications and establishes connections to the topics of fractional calculus, nonextensive statistical mechanics, Tsallis statistics, superstatistics, the Mittag-Leffler stochastic process, the Lévi process and time series. Apart from examining the properties, the matrix-variate analogue and the connection to fractional calculus are also explained. By using the pathway model of Mathai, the model is further generalized. Connections to Mittag-Leffler distributions and corresponding autoregressive processes are also discussed. [ABSTRACT FROM AUTHOR]