1. SPHERE adaptive optics performance for faint targets
- Author
-
M. I. Jones, J. Milli, I. Blanchard, Z. Wahhaj, R. J. De Rosa, C. Romero, and N. Ihanec
- Subjects
Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
Context: High contrast imaging is a powerful technique to detect and characterize planetary companions at large orbital separations from their parent stars. Aims: We aim at studying the limiting magnitude of the VLT/SPHERE Adaptive Optics system and the corresponding instrument performance for faint targets (G $\ge$ 11.0 mag). Methods: We computed coronagraphic H-band raw contrast at 300 [mas] and FWHM of the non-coronagraphic PSF, for a total of 111 different stars observed between 2016 and 2022 with IRDIS. For this, we processed a large number of individual frames that were obtained under different atmospheric conditions. We then compared the resulting raw contrast and the PSF shape as a function of the visible wave front sensor instant flux which scales with the G-band stellar magnitude. We repeated this analysis for the top 10\% and 30\% best turbulence conditions in Cerro Paranal. Results: We found a strong decrease in the coronagraphic achievable contrast for star fainter than G $\sim$ 12.5 mag, even under the best atmospheric conditions. In this regime, the AO correction is dominated by the read-out noise of the WFS detector. In particular we found roughly a factor ten decrease in the raw contrast ratio between stars with G $\sim$ 12.5 and G $\sim$ 14.0 mag. Similarly, we observe a sharp increase in the FWHM of the non-coronagraphic PSF beyond G $\sim$ 12.5 mag, and a corresponding decrease in the strehl ratio from $\sim$ 50\% to $\sim$ 20\% for the faintest stars. Although these trend are observed for the two turbulence categories, the decrease in the contrast ratio and PSF sharpness is more pronounced for poorer conditions., Comment: Submitted to A&A
- Published
- 2022
- Full Text
- View/download PDF