1. Koala retrovirus (KoRV) subtypes and their impact on captive koala (Phascolarctos cinereus) health.
- Author
-
Hashem MA, Kayesh MEH, Maetani F, Eiei T, Mochizuki K, Ochiai S, Ito A, Ito N, Sakurai H, Asai T, and Tsukiyama-Kohara K
- Subjects
- Animals, Cells, Cultured, Evolution, Molecular, Leukocytes, Mononuclear virology, Lymphoma virology, RNA, Viral genetics, Retroviridae Infections, Viral Load genetics, Phascolarctidae virology, Retroviridae genetics
- Abstract
Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-B to J). However, the impact of infection with multiple subtypes is not well understood. Accordingly, in this study, we surveyed a representative sample from a Japanese zoo population to determine the infection status for three KoRV subtypes (KoRV-A, B, and C) and to investigate the proviral and RNA load profiles in animals with single- and multiple-subtype infections, using peripheral blood mononuclear cells (PBMCs) and plasma. Six koalas were evaluated in the study; all were infected with KoRV-A, and two koalas were coinfected with non-A subtypes (KoRV-B and/or KoRV-C). The highest KoRV total RNA and viral loads in PBMCs and plasma were found in a koala infected with multiple subtypes (KoRV-A, -B and -C). The other koala infected with multiple subtypes (KoRV-A and B) showed the highest proviral PBMC load but the lowest RNA copy number in PBMC and plasma. PBMCs from this animal were cultured for further investigation, and KoRV RNA was detected in the cells and culture supernatant after 7 and/or 14 days. The koalas harboring multiple subtypes had a higher white blood cell count than those harboring only KoRV-A and were judged to be leukemic, and they subsequently died due to lymphoma. Accordingly, we conclude that coinfection with multiple KoRV subtypes may be linked to more-severe disease. In a sequence alignment, the detected KoRV-A env gene showed 100% sequence identity to the reference gene, whereas the KoRV-B and -C env genes varied from their reference sequences.
- Published
- 2021
- Full Text
- View/download PDF