1. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose
- Author
-
G. Harry van Lenthe, Jessica Snabel, Fereshteh Mirahmadi, Samaneh Ghazanfari, Frank Lobbezoo, Jan Harm Koolstra, Reinout Stoop, Vincent Everts, Orale Celbiologie (ORM, ACTA), Orale Kinesiologie (ORM, ACTA), RS: FSE AMIBM, AMIBM, Biobased Materials, RS: FSE Biobased Materials, Sciences, RS: FSE Sciences, Oral Cell Biology, Oral Kinesiology, and VU University medical center
- Subjects
0301 basic medicine ,Cartilage, Articular ,Aging ,Collagen crosslinks ,CROSS-LINKING ,Swine ,Ribose ,Biomedical Innovation ,Temporomandibular joint ,Stiffness ,Glycosaminoglycan ,chemistry.chemical_compound ,Life ,Incubation ,COMPRESSIVE PROPERTIES ,General Medicine ,HUMAN ARTICULAR-CARTILAGE ,Biomechanical Phenomena ,medicine.anatomical_structure ,Cross-Linking Reagents ,Models, Animal ,medicine.symptom ,MHR - Metabolic Health Research ,GLYCATION END-PRODUCTS ,Healthy Living ,MOLECULAR-STRUCTURE ,NONENZYMATIC GLYCATION ,macromolecular substances ,In Vitro Techniques ,Condyle ,03 medical and health sciences ,Extracellular ,medicine ,Animals ,General Dentistry ,Biology ,PORCINE TEMPOROMANDIBULAR-JOINT ,RABBIT ACHILLES-TENDON ,Cartilage ,Mandibular Condyle ,technology, industry, and agriculture ,Cell Biology ,030104 developmental biology ,Otorhinolaryngology ,chemistry ,BIOMECHANICAL PROPERTIES ,Biophysics ,Stress, Mechanical ,ELSS - Earth, Life and Social Sciences ,AGE-RELATED DECREASE - Abstract
OBJECTIVE: Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. METHODS: Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. RESULTS: Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. CONCLUSION: The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle. ispartof: Archives of Oral Biology vol:87 pages:102-109 ispartof: location:England status: published
- Published
- 2018
- Full Text
- View/download PDF