1. A Novel Near-Infrared Spectroscopy and Chemometrics Method for Rapid Analysis of Several Chemical Components and Antioxidant Activity of Mint (Mentha haplocalyx Briq.) Samples
- Author
-
Yongnian Ni, Serge Kokot, and Wenjiang Dong
- Subjects
Flavonoids ,Analyte ,Spectroscopy, Near-Infrared ,Chromatography ,Plant Extracts ,Chemistry ,Biphenyl Compounds ,Near-infrared spectroscopy ,Linear discriminant analysis ,Least squares ,Antioxidants ,Data matrix (multivariate statistics) ,Pattern Recognition, Automated ,Chemometrics ,Phenols ,Picrates ,Principal component analysis ,Partial least squares regression ,Least-Squares Analysis ,Instrumentation ,Algorithms ,Spectroscopy ,Mentha - Abstract
A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint ( Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods—K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.
- Published
- 2014