1. Self-adaptive metaheuristics for solving a multi-objective 2-dimensional vector packing problem
- Author
-
Saoussen Krichen, Nadia Dahmani, El-Ghazali Talbi, François Clautiaux, Institut Supérieur de Gestion de Tunis [Tunis] (ISG), Université de Tunis, Université de Lille, Sciences et Technologies, Parallel Cooperative Multi-criteria Optimization (DOLPHIN), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique Fondamentale de Lille (LIFL), and Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematical optimization ,education.field_of_study ,Bin packing problem ,Population ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,Bin ,Set (abstract data type) ,Encoding (memory) ,Minification ,education ,Metaheuristic ,Finite set ,Software ,Mathematics - Abstract
International audience; In this paper, a multi-objective 2-dimensional vector packing problem is presented. It consists in packing a set of items, each having two sizes in two independent dimensions, say, a weight and a length into a finite number of bins, while concurrently optimizing three cost functions. The first objective is the minimization of the number of used bins. The second one is the minimization of the maximum length of a bin. The third objective consists in balancing the load overall the bins by minimizing the difference between the maximum length and the minimum length of a bin. Two population-based metaheuristics are performed to tackle this problem. These metaheuristics use different indirect encoding approaches in order to find good permutations of items which are then packed by a separate decoder routine whose parameters are embedded in the solution encoding. It leads to a self-adaptive metaheuristic where the parameters are adjusted during the search process. The performance of these strategies is assessed and compared against benchmarks inspired from the literature.
- Published
- 2014