1. Experiment on Cultivation Performance of Plant Fiber-Based Degradable Film in Paddy Field
- Author
-
Xianglan Ming and Haitao Chen
- Subjects
plant fiber-based degradable film ,paddy mulching cultivation ,weed inhibition ,warming effect ,economic benefit ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
To solve the problems of the damage of weed in paddy field on crop yield and quality, the impact of chemical herbicides on the ecological environment, and the soil pollution caused by plastic film mulching, the field-positioning test was carried out in 2015 to 2017. Taking Daohuaxiang 2 as the test material, three treatments (plant fiber-based degradable film, plastic film, and CK) were setup to investigate the effects of plant fiber-based degradable film on the weed inhibition, warming effect under mulching cultivation, rice yield, rice quality, and economic benefit. The results showed that compared with CK, the plant fiber-based degradable film and plastic film reduced the weed by 85.5% to 87.7% and 78.7% to 81.7%, respectively. Plant fiber-based degradable film mulching cultivation can increase the soil temperature of soil layer 0 to 0.1 m depth. In 2015 to 2017, rice yield with plant fiber-based degradable film increased by 8.71%, 7.53%, and 9.02%, respectively. Plant fiber-based degradable film can significantly reduce the hardness, increase its adhesion, and improve the eating quality of rice. Different films mulching had a certain impact on crop economic benefit. During the developmental stage of the panicle, the plant fiber-based degradable film began to crack, and by the blossom fruit period, the degradation rate reached the grade of 3 or 4. Therefore, the use of plant fiber-based degradable film instead of plastic film can reduce the amount of weed under the membrane and create a more suitable soil temperature, which was conducive to rice yield and quality.
- Published
- 2020
- Full Text
- View/download PDF