1. Deep Contrastive Learning-Based Model for ECG Biometrics
- Author
-
Nassim Ammour, Rami M. Jomaa, Md Saiful Islam, Yakoub Bazi, Haikel Alhichri, and Naif Alajlan
- Subjects
ECG biometric ,biometric identification ,contrastive learning ,deep learning ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The electrocardiogram (ECG) signal is shown to be promising as a biometric. To this end, it has been demonstrated that the analysis of ECG signals can be considered as a good solution for increasing the biometric security levels. This can be mainly due to its inherent robustness against presentation attacks. In this work, we present a deep contrastive learning-based system for ECG biometric identification. The proposed system consists of three blocks: a feature extraction backbone based on short time Fourier transform (STFT), a contrastive learning network, and a classification network. We evaluated the proposed system on the Heartprint dataset, a new ECG biometrics multi-session dataset. The experimental analysis shows promising capabilities of the proposed method. In particular, it yields an average top1 accuracy of 98.02% on a new dataset built by gathering 1539 ECG records from 199 subjects collected in multiple sessions with an average interval between sessions of 47 days.
- Published
- 2023
- Full Text
- View/download PDF