1. Effect of Citrate on the Size and the Magnetic Properties of Primary Fe3O4 Nanoparticles and Their Aggregates
- Author
-
Andrea Atrei, Fariba Fahmideh Mahdizadeh, Maria Camilla Baratto, and Andrea Scala
- Subjects
magnetite ,nanoparticles ,XRD ,DLS ,magnetic properties ,superparamagnetism ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The size, size distribution and magnetic properties of magnetite nanoparticles (NPs) prepared by co-precipitation without citrate, in the presence of citrate and citrate adsorbed post-synthesis were studied by X-ray Diffraction (XRD), Dynamic Light Scattering (DLS), Electron Paramagnetic Resonance (EPR) and magnetization measurements. The aim of this investigation was to clarify the effect of citrate ions on the size and magnetic properties of magnetite NPs. The size of the primary NPs, as determined by analysing the width of diffraction peaks using various methods, was ca. 10 nm for bare magnetite NPs and with citrate adsorbed post-synthesis, whereas it was around 5 nm for the NPs co-precipitated in the presence of citrate. DLS measurements show that the three types of NPs form aggregates (100โ200 nm in diameter) but the dispersions of the citrate-coated NPs are more stable against sedimentation than those of bare NPs. The sizes and size distributions determined by XRD are in good agreement with those of the magnetic domains obtained by fitting of the magnetization vs. magnetic field intensity curves. Magnetization vs. magnetic field intensity curves show that the three kinds of sample are superparamagnetic.
- Published
- 2021
- Full Text
- View/download PDF