1. Coulomb blockade in monolithic and monocrystalline Al-Ge-Al nanowire heterostructures
- Author
-
J. Delaforce, Minh Anh Luong, Roman B. G. Kramer, K. Bharadwaj, Olivier Buisson, M. den Hertog, J. Nacenta Mendivil, Masiar Sistani, Cécile Naud, Alois Lugstein, Nicolas Roch, Vienna University of Technology (TU Wien), Circuits électroniques quantiques Alpes (QuantECA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), and Matériaux, Rayonnements, Structure (MRS)
- Subjects
010302 applied physics ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Transistor ,Nanowire ,Coulomb blockade ,Conductance ,Schottky diode ,Heterojunction ,02 engineering and technology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,Monocrystalline silicon ,law ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Coulomb ,0210 nano-technology - Abstract
We report the realization of Ge single-hole transistors based on Al-Ge-Al nanowire (NW) heterostructures. The formation of these axial structures is enabled by a thermally induced exchange reaction at 350 °C between the initial Ge NW and Al contact pads, leading to a monolithic and monocrystalline Al-Ge-Al NW. The 25 nm-diameter Ge segment is a quasi-1D hole channel. Its length is defined by two abrupt Al-Ge Schottky tunnel barriers. At low temperatures, the device shows a single hole transistor signature with well pronounced Coulomb oscillations. The barrier strength between the Ge segment and the Al leads can be tuned as a function of the gate voltage VG. It leads to a zero conductance at VG= 0 V to a few quantum conductance at VG= –15 V. When the gate voltage increases from –5 V to –3 V, the charging energy is extracted and it varies from 0.39 meV to 2.42 meV.We report the realization of Ge single-hole transistors based on Al-Ge-Al nanowire (NW) heterostructures. The formation of these axial structures is enabled by a thermally induced exchange reaction at 350 °C between the initial Ge NW and Al contact pads, leading to a monolithic and monocrystalline Al-Ge-Al NW. The 25 nm-diameter Ge segment is a quasi-1D hole channel. Its length is defined by two abrupt Al-Ge Schottky tunnel barriers. At low temperatures, the device shows a single hole transistor signature with well pronounced Coulomb oscillations. The barrier strength between the Ge segment and the Al leads can be tuned as a function of the gate voltage VG. It leads to a zero conductance at VG= 0 V to a few quantum conductance at VG= –15 V. When the gate voltage increases from –5 V to –3 V, the charging energy is extracted and it varies from 0.39 meV to 2.42 meV.
- Full Text
- View/download PDF