1. Proposal of a new diffractive corneal inlay to improve near vision in a presbyopic eye.
- Author
-
Montagud-Martínez D, Ferrando V, Monsoriu JA, and Furlan WD
- Subjects
- Computer Simulation, Corneal Topography, Humans, Models, Biological, Models, Theoretical, Orbital Implants, Refraction, Ocular, Vision, Binocular, Visual Acuity, Cornea metabolism, Corneal Transplantation methods, Myopia metabolism, Presbyopia metabolism
- Abstract
A new class of diffraction-based corneal inlays for treatment of presbyopia is described. The inlay is intended to achieve an improvement of the near focus quality over previous designs. Our proposal is a two-zone hybrid device with separated amplitude and phase areas having a central aperture and no refractive power. An array of micro-holes is distributed on the surface of the inlay conforming a binary photon sieve. In this way, the central hole of the disk contributes to the zero order of diffraction, and the light diffracted by the micro-holes in the peripheral photon sieve produces a real focus for near vision. We employed ray-tracing software to study the performance of the new inlay in the Liou-Brennan model eye. The modulation transfer functions (MTFs) at the distance and near foci, and the area under the MTFs for different object vergences, were the merit functions used in the evaluation. The results were compared with those obtained with previous pure amplitude designs. Additionally, image simulations were performed with the inlays in the model eye to show the good performance of our proposal in improving the quality of the near vision.
- Published
- 2020
- Full Text
- View/download PDF