1. A reusable AI-enabled defect detection system for railway using ensembled CNN.
- Author
-
Ferdousi, Rahatara, Laamarti, Fedwa, Yang, Chunsheng, and Saddik, Abdulmotaleb El
- Abstract
Accurate defect detection is crucial for ensuring the trustworthiness of intelligent railway systems. Current approaches either rely on static ensembling of Convolutional Neural Networks (CNNs) or on single deep-learning CNN models. Traditional methods use a large volume of data to identify underlying patterns. However, training a new defect classifier with limited samples often results in overfitting and poor performance on unseen images. To overcome these challenges, we introduce a dynamic weight adaptation mechanism within an ensemble learning framework, enhanced by state-of-the-art transfer learning models (VGG-19, MobileNetV3, and ResNet50). We obtained a good test and validation accuracy of 99%, accompanied by a precision of 0.99, and recall and F1-score of 0.98. Unlike previous methods, our approach demonstrates consistency. Particularly, techniques that involve selecting predictions based on minimum loss previously required a significant number of epochs to stabilize. Data fusion techniques are even more demanding, requiring a substantially higher number of epochs for stabilization. Conversely, our proposed method achieves stable performance and rapid convergence within just 10 epochs, and it shows minimal fluctuation in the training curve (0–5 epochs). This visibly contrasts with earlier methods, which, despite reaching similar levels of accuracy, required significantly more epochs and exhibited greater fluctuations in their training curves. Through these findings, we anticipate that the proposed dynamic weight adaptation-based ensemble approach will further research and development of reusable AI-enabled solutions for rail defect classification. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF