1. Inhibition of hepatitis C virus RNA translation by antisense bile acid conjugated phosphorothioate modified oligodeoxynucleotides (ODN).
- Author
-
González-Carmona MA, Quasdorff M, Vogt A, Tamke A, Yildiz Y, Hoffmann P, Lehmann T, Bartenschlager R, Engels JW, Kullak-Ublick GA, Sauerbruch T, and Caselmann WH
- Subjects
- Antiviral Agents chemistry, Antiviral Agents metabolism, Bile Acids and Salts chemistry, Bile Acids and Salts metabolism, Cells, Cultured, Gene Expression drug effects, Genes, Reporter, Hepacivirus physiology, Hepatocytes virology, Humans, Phosphorothioate Oligonucleotides chemistry, Phosphorothioate Oligonucleotides metabolism, Antiviral Agents pharmacology, Bile Acids and Salts pharmacology, Hepacivirus drug effects, Phosphorothioate Oligonucleotides pharmacology, Protein Biosynthesis drug effects, Virus Replication drug effects
- Abstract
Background: The 5'-noncoding region (5'NCR) of the HCV-genome comprises an internal ribosome entry site essential for HCV-translation/replication. Phosphorothioate oligodeoxynucleotides (tS-ODN) complementary to this region can inhibit HCV-translation in vitro. In this study, bile acid conjugated tS-ODN were generated to increase cell-selective inhibition of 5'NCR-dependent HCV-translation., Methods: Different bile acid conjugated tS-ODN complementary to the HCV5'NCR were selected for their inhibitory potential in an in vitro transcription/translation assay. To analyze OATP (organic anion transporting polypeptides)-selective uptake of bile acid conjugated ODN, different hepatoma cells were stably transfected with the OATP1B1-transporter and primary human hepatocytes were used. An adenovirus encoding the HCV5'NCR fused to the luciferase gene (Ad-GFP-NCRluc) was generated to quantify 5'NCR-dependent HCV gene expression in OATP-overexpressing hepatoma cells and in vivo., Results: A 17mer phosphorothioate modified ODN (tS-ODN4_13) complementary to HCV5'NCR was able to inhibit 5'NCR-dependent HCV-translation in an in vitro transcription/translation test system by more than 90% and it was also effective in Huh7-cells containing the HCV subgenomic replicon. Conjugation to taurocholate (tS-ODN4_13T) significantly increased selective ODN uptake by primary human hepatocytes and by OATP1B1-expressing HepG2-cells compared to parental HepG2-cells. Correspondingly, tS-ODN4_13T significantly inhibited HCV gene expression in liver-derived OATP1B1-expressing HepG2- or CCL13-cells up to 70% compared to unconjugated tS-ODN and compared to mismatch taurocholate coupled tS-ODN. In vivo, tS-ODN4_13T showed also a trend to block 5'NCR-dependent HCV gene expression., Conclusions: The tested taurocholate conjugated 17mer antisense ODN complementary to HCV5'NCV showed an increased and selective uptake by hepatocytes and liver-derived cells through OATP-mediated transport resulting in enhanced specific inhibition of HCV gene expression in vitro and in vivo. Thus, this novel approach may represent a promising strategy to improve antisense approaches with ODN in the control of hepatitis C infection., (Copyright © 2012 Elsevier B.V. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF