1. Anti-Virulence Activity of the Cell-Free Supernatant of the Antarctic Bacterium Psychrobacter sp. TAE2020 against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients
- Author
-
Ermenegilda Parrilli, Angela Casillo, Maria Michela Corsaro, Michela Relucenti, Maria Luisa Tutino, Orlando Donfrancesco, Caterina D'Angelo, Marco Artini, Ersilia Fiscarelli, Gianluca Vrenna, Rosanna Papa, Laura Selan, Vanessa Tuccio Guarna Assanti, Papa, R., Vrenna, G., D'Angelo, C., Casillo, A., Relucenti, M., Donfrancesco, O., Corsaro, M. M., Vita Fiscarelli, E., Tuccio Guarna Assanti, V., Tutino, M. L., Parrilli, E., Artini, M., and Selan., L.
- Subjects
0301 basic medicine ,Microbiology (medical) ,Proteases ,030106 microbiology ,Virulence ,pyocyanin ,Context (language use) ,RM1-950 ,medicine.disease_cause ,anti-virulence ,Biochemistry ,Microbiology ,Article ,biofilm ,cystic fibrosis ,03 medical and health sciences ,chemistry.chemical_compound ,Pyocyanin ,medicine ,Pharmacology (medical) ,antarctic bacteria ,motility ,proteases ,pseudomonas aeruginosa ,SEM ,Antarctic bacteria ,General Pharmacology, Toxicology and Pharmaceutics ,cystic fibrosi ,biology ,Pseudomonas aeruginosa ,Biofilm ,protease ,biology.organism_classification ,Quorum sensing ,030104 developmental biology ,Infectious Diseases ,chemistry ,Therapeutics. Pharmacology ,Bacteria - Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often involved in airway infections of cystic fibrosis (CF) patients. Its pathogenicity is related to several virulence factors, such as biofilm formation, motility and production of toxins and proteases. The expression of these virulence factors is controlled by quorum sensing (QS). Thus, QS inhibition is considered a novel strategy for the development of antipathogenic compounds acting on specific bacterial virulence programs without affecting bacterial vitality. In this context, cold-adapted marine bacteria living in polar regions represent an untapped reservoir of biodiversity endowed with an interesting chemical repertoire. In this paper, we investigated the biological activity of a supernatant derived from a novel Antarctic bacterium (SN_TAE2020) against specific virulence factors produced by P. aeruginosa strains isolated from FC patients. Our results clearly show a reduction in pyocyanin and protease production in the presence of SN_TAE2020. Finally, SN_TAE2020 was also able to strongly affect swarming and swimming motility for almost all tested strains. Furthermore, the effect of SN_TAE2020 was investigated on biofilm growth and texture, captured by SEM analysis. In consideration of the novel results obtained on clinical strains, polar bacteria might represent potential candidates for the discovery of new compounds limiting P. aeruginosa virulence in CF patients.
- Published
- 2021
- Full Text
- View/download PDF