1. Claudin targeting as an effective tool for directed barrier modulation of the viable epidermis
- Author
-
Laura‐Sophie Beier, Ayk Waldow, Saeed Khomeijani Farahani, Roman Mannweiler, Sabine Vidal‐Y‐Sy, Johanna M. Brandner, Jörg Piontek, and Dorothee Günzel
- Subjects
History and Philosophy of Science ,General Neuroscience ,Claudins ,Claudin-1 ,Humans ,Claudin-5 ,Claudin-4 ,Epidermis ,Permeability ,General Biochemistry, Genetics and Molecular Biology ,Tight Junctions - Abstract
Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.
- Published
- 2022
- Full Text
- View/download PDF