1. Long time dynamics for damped Klein-Gordon equations
- Author
-
Geneviève Raugel, Wilhelm Schlag, Nicolas Burq, Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics, University of Chicago, ANR: ANR-13-BS01-0010-03 (ANA\'E).NSF: DMS-1160817, and ANR-13-BS01-0010,ANAÉ,Analyse asymptotique des Equations aux dérivées partielles d'évolution(2013)
- Subjects
Dynamical systems theory ,General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Invariant manifold ,Mathematics::Analysis of PDEs ,Banach space ,Dynamical Systems (math.DS) ,Type (model theory) ,01 natural sciences ,symbols.namesake ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Mathematics - Dynamical Systems ,0101 mathematics ,Klein–Gordon equation ,Mathematical physics ,Physics ,010102 general mathematics ,Nonlinear system ,Bounded function ,symbols ,MSC: 35L05, 74J20, 35H15, 37L30, 37L50 ,010307 mathematical physics ,Analysis of PDEs (math.AP) ,Sign (mathematics) - Abstract
For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in $H^1\times L^2$. In particular, any global solution is bounded. The result applies to standard energy subcritical focusing nonlinearities $|u|^{p-1} u$, $1\textless{}p\textless{}(d+2)/(d-2)$ as well as any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems).
- Published
- 2017
- Full Text
- View/download PDF