1. Linking Composition, Structure and Thickness of CoOOH layers to Oxygen Evolution Reaction Activity by Correlative Microscopy.
- Author
-
Luan C, Angona J, Bala Krishnan A, Corva M, Hosseini P, Heidelmann M, Hagemann U, Batsa Tetteh E, Schuhmann W, Tschulik K, and Li T
- Abstract
The role of β-CoOOH crystallographic orientations in catalytic activity for the oxygen evolution reaction (OER) remains elusive. We combine correlative electron backscatter diffraction/scanning electrochemical cell microscopy with X-ray photoelectron spectroscopy, transmission electron microscopy, and atom probe tomography to establish the structure-activity relationships of various faceted β-CoOOH formed on a Co microelectrode under OER conditions. We reveal that ≈6 nm β-CoOOH(01 1 ‾ ${\bar{1}}$ 0), grown on [ 1 ‾ 2 1 ‾ ${\bar{1}2\bar{1}}$ 0]-oriented Co, exhibits higher OER activity than ≈3 nm β-CoOOH(10 1 ‾ ${\bar{1}}$ 3) or ≈6 nm β-CoOOH(0006) formed on [02 2 ‾ 1 ] ${\bar{2}1]}$ - and [0001]-oriented Co, respectively. This arises from higher amounts of incorporated hydroxyl ions and more easily reducible Co
III -O sites present in β-CoOOH(01 1 ‾ ${\bar{1}}$ 0) than those in the latter two oxyhydroxide facets. Our correlative multimodal approach shows great promise in linking local activity with atomic-scale details of structure, thickness and composition of active species, which opens opportunities to design pre-catalysts with preferred defects that promote the formation of the most active OER species., (© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF